
ViewDS Access Sentinel:

Installation and Reference Guide

Published: March 2024
Version: 7.5.2
© ViewDS Identity Solutions



ViewDS Access Sentinel: Installation and Reference Guide

For ViewDS Directory release 7.5.2

March 2024

Document Lifecycle

ViewDS may occasionally update documentation between software releases. Therefore, please visit www.viewds.com to ensure

you have the PDF with most recent publication date. The site also hosts the most recent version of this document in HTML

format.

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the Copyright Act,

no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying, recording or otherwise) be

reproduced, stored in a retrieval system or transmitted without prior written permission. Inquiries should be addressed to the

publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy of this

publication. Notwithstanding, ViewDS Identity Solutions does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS Directory, ViewDS Access Presence and ViewDS Access Sentinel are trademarks of ViewDS Identity Solutions.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2024 ViewDS Identity Solutions

ABN 19 092 422 47



Contents

Contents

About this guide 1
Who should read this guide 1

Related documents 1

How this guide is organized 1

About ViewDS Access Sentinel 3
What is Access Sentinel? 3

Why use XACML access controls? 3

Brief introduction to XACML 4

Access Sentinel architecture 7

Installing and configuring 13
XACML configuration parameters 13

Installing the Authorization PolicyManager 16

Configuring the Authorization PolicyManager 17

Deploying the IIS PEP 19

Deploying the Apache PEP 21

Modifying the SOAP address 23

Tracing decisionmaking 23

About XACML framework and policy 25
XACML components 25

XACML terms to remember 26

Introduction to XACML policy 26

More about XACML policy 29

Attribute- versus role-based access control 34

XACML tutorials 39
ViewDS PEP tutorial: ABAC 39

ViewDS PEP tutorial: RBAC 51

HTTP PEP tutorial 59

XACML attributes provided by a PEP 71
XACML attributes provided by an HTTP PEP 71

- i -



Contents

XACML attributes provided by the ViewDS PEP 73

Operational attributes 75
viewDSXACMLSubtreePolicy 75

viewDSXACMLEntryPolicy 76

viewDSXACMLAttributePresentation 76

viewDSXACMLPolicyVersion 77

viewDSXACMLNamedExpression 78

viewDSXACMLActivePolicy 79

viewDSXACMLConfiguration 80

- ii -



ViewDS Access Sentinel: Installation and ReferenceGuide

About this guide

This guide introduces Access Sentinel and the ViewDS implementation of XACML. It also
includes how to install Access Sentinel, and how to write andmanage XACML policy.

This section describes:

l Who should read this guide

l Related documents

l How this guide is organized

Who should read this guide
Read this guide if you need to install Access Sentinel and become familiar with writing and
managing XACML policy for applications. Before using this guide, you should first read the
'SystemOverview' in theViewDS Directory: Installation andOperation Guide.

Related documents
Other documents relating to Access Sentinel are:

l ViewDS Directory: Installation andOperation Guide

l ViewDS Directory Server: Technical ReferenceGuide

l ViewDS Access Presence: Technical ReferenceGuide

l ViewDS Access Proxy: Installation Guide

l ViewDSManagement Agent in-application help

l ViewDS Authorization PolicyManager in-application help

l ViewDS Access Sentinel: Application Integration Kit for Java or .NET

How this guide is organized
This guide contains the following:

About this guide
Provides an overview of this guide.

About ViewDS Access Sentinel
Provides an overview of the ViewDS XACML framework and of Access Sentinel, along with an
introduction to XACML.

Installing and configuring
Provides the instructions to install and configure Access Sentinel.

- 1 -



About this guide

About XACML framework and policy
Provides information about Access Sentinel’s implementation of XACML.

XACML tutorials
Provides the steps to define and apply an XACML policy to a resource.

XACML attributes provided by a PEP
Provides a technical reference for the XACML attributes provided by each Policy Enforcement
Point (PEP).

Operational attributes
Provides a technical reference for Access Sentinel’s operational attributes.

- 2 -



ViewDS Access Sentinel: Installation and ReferenceGuide

About ViewDS Access

Sentinel

This chapter introduces the ViewDS XACML framework and Access Sentinel, and provides a
brief overview of XACML (eXtensible AccessControl Markup Language).

It describes the following:

l What is Access Sentinel?

l Why use XACML access controls?

l Brief introduction to XACML

l Access Sentinel architecture

What is Access Sentinel?
TheXACML framework is part of ViewDS Directory. It allows you to apply theXACML
Access Control scheme by defining XACML policy that controls access to the directory.
ViewDS Access Sentinel is an extension of the XACML framework that allows you to apply
XACML policy to applications external to ViewDS Access Sentinel requires additional licencing
beyond that of the core ViewDS Directory.

The XACML framework and Access Sentinel conform to the XACMLVersion 3.0 standard.

Why use XACML access controls?
The ViewDS XACML framework and Access Sentinel allow a fine-grained enterprise-wide
approach tomanaging access-control policy across all of an organisation’s applications and data
sources.

Fine-grained access-control policy goes beyond previousmodels of access control. These
policies not only control ‘who can do what with which resources’, but also control the why, when,
where and how of entitlement.

Enterprise-wide access controls allow an organization to define, enforce, and audit their access-
control policies. This is of increasing importance in the face of regulatory pressures and is
discussed inmore detail below.

- 3 -

http://www.oasis-open.org/


About ViewDS Access Sentinel

Enterprise-wide access control
Traditionally, each application within an organisation has its own access-control mechanism.
The access controls are therefore duplicated across applications andmust bemanaged
individually. Aswell as creating administrative inefficiencies, this approach also complicates the
task of imposing enterprise-wide access-control policies.

An alternative is to remove access control from the applications and run it as a discrete service
shared acrossmany disparate applications.

This approach hasmany benefits:

l Consistent access-control policies can be applied to all applications and data sources

l Support andmaintenance is streamlined

l Auditing and compliance are simplified

Additionally, enterprise-wide access control allows security to bemanagedmore efficiently. The
moment a policy is created or updated, it can be applied across all relevant applications. These
applications become less complex and easier to maintain without their entitlement layer – a
change to a security policy requires nomodification to the application’s code.

Brief introduction to XACML
XACMLVersion 3.0 is a standard that provides a framework for fine-grained, enterprise-wide
access control. The standard describes two languages, both written in XML: an access-control
policy language, and an access-control decision language.

The policy language describes access-control requirements by defining policies that describe, for
example, who can accesswhat and when. The decision language is used to form requests and
responses. A request askswhether a given action by a given entity should be allowed; and a
response provides the answer, which is determined according to an XACML policy.

Simplified XACML implementation
The following illustrates a simplified XACML implementation.

In the following illustration, a user attempts to view a document file protected by an XACML
access-control implementation. The implementation determineswhether the user should be
permitted or denied access by interrogating the appropriate XACML policy.

- 4 -



ViewDS Access Sentinel: Installation and ReferenceGuide

The policymight include considerations such as the user’s security level, department, role,
position, location and the time of day. All combine to determine whether the user should be
allowed access to the resource (as shown below).

XACML access control components
An implementation of XACML access control has four logical components (shown below).

The logical components are:

l Policy Enforcement Point (PEP)
Protects a resource from unauthorized actions.

l Policy Decision Point (PDP)
Determineswhether access should be granted to a protected resource.

l Policy Administration Point (PAP)
Allows policies to be created and stored in a repository.

- 5 -



About ViewDS Access Sentinel

l Policy Information Point (PIP)
Stores additional information, such as user attributes, that can be used by the PDP tomake
access-control decisions.

In the illustrated example the resources protected by a Policy Enforcement Point (PEP) are the
web pages available through a web server.

The steps shown in the illustration are as follows:

1. A user requests access to a web page.

2. The web server asks the Policy Enforcement Point (PEP) to send an 'authorization decision
request’ to the Policy Decision Point (PDP). The request includesXACML attributes that
identify (among other things) the user, the resource they are attempting access, the action
they are attempting to perform, and the environment (for example, date and time).

3. The Policy Decision Point (PDP) determineswhether access should be permitted. It looks at
the appropriate XACML policy in the Policy Administration Point (PAP), and the appropriate
user attributes in the Policy Information Point (PIP). The information in the PIP allows the
PDP to identify the user attempting to access the resource.

4. The PDP returns an 'authorization decision response’ to the Policy Enforcement Point
(PEP), which then acts on the decision to permit or deny access to the user.

Controlling access to the PIP and PAP

Many organizations implement an XACML solution with the intention to provide a single point for
policymanagement and enforcement. However, most XACML solutions fail to meet this
expectation because the PAP and PIP are accessed by users and require their own separate
access controls.

Therefore, many XACML solutions introduce a requirement for three new, separate access-
control systems: one for the PAP, a second for the PIP, and a third for the enterprise XACML
access-control system.

An alternative, however, that avoids the complexity of this recursive hierarchy is to unify the
PDP, PAP and PIP into a single policy server. This is the approach adopted by ViewDS and is
discussed in the next sectionAccess Sentinel architecture.

Repositories for the PIP and PAP

The repository for the Policy Information Point (PIP) is typically an existing LDAP directory
because it usually already contains the organization’s user attributes. However, asmost
directories cannot manage XML, the repository for the Policy Administration Point (PAP) is
typically a relational database that supports XML.

An improved approach that makes policymanagement and implementationmore efficient is to
store both PIP and PAP data in a single directory that fully supports XML. Thismakes the
administrator’s jobmuch easier as they can search on the individual XML components within
policy. Again, this approach is discussed in the next sectionAccess Sentinel architecture.

- 6 -



ViewDS Access Sentinel: Installation and ReferenceGuide

XACML terms to remember
There are a couple of important XACML terms to remember:

l Target – the set of resources protected by the XACML policy (for example, a directory or a
web site)

l Resource – the specific item (for example, an entry, attribute or value in the directory or a
specific web page) within the target that the subject is attempting to access

l Subject – the user attempting to access a resource
l Action – the action attempted by the subject (e.g. view or modify an entry or web page)

These terms are illustrated below for XBAC where the target is the ViewDS directory and the
resource is an individual directory entry.

Access Sentinel architecture
Access Sentinel extends the XACML framework that is installed as part of the Directory System
Agent (DSA).

The XACML framework comprises a PDP that accepts authorization decision requests from an
internal PEP, which protects the directory from unauthorized access. It also includes a PIP, a
PAP, and a user interface to the PAP, which is integrated into the ViewDSManagement Agent.

Access Sentinel extends the XACML framework as follows:

l It extends the PDP’s functionality to accept authorization decision requests from an external
PEP.

l It includes PEPs to protect applications that are external to ViewDS.

l It includes a dedicated PAP application, the Authorization PolicyManager, for administration
of XACML policy.

These features are illustrated below.

- 7 -



About ViewDS Access Sentinel

The remainder of this section describes some of the key features of the framework and Access
Sentinel.

Unified policy server
An important capability of the ViewDS XACML framework is that it unifies the Policy Decision
Point (PDP), Policy Administration Point (PAP) and Policy Information Point (PIP). Access to
the PAP and PIP is therefore controlled internally, eradicating the complexities and performance
overheads associated with the recursive hierarchy described previously.

Unified PIP and PAP user interface
The PAP user interface allows XACML policy to be defined andmanaged. There are two options
for accessing the user interface – the ViewDSManagement Agent and the Authorization Policy
Manager.

The ViewDSManagement Agent is a windows-based application supplied with ViewDS, which
allows you tomanagemultiple implementations remotely. It allows you tomanage user attributes
stored in the Policy Information Point (PIP), andmanage policy in the Policy Administration Point
(PAP). You can thereforemanage both the PAP and PIP from the same application.

- 8 -



ViewDS Access Sentinel: Installation and ReferenceGuide

The PAP user interface is also available as a Java-based application, the Authorization Policy
Manager, which provides the same PAP functionality as the ViewDSManagement Agent. It can
be distributed to themost appropriate people in an organisation to help ensure policies are
maintained efficiently.

Versioning of access-control policy
Users of either PAP interface can create a new version of a policy and then apply it at their
discretion. Users can define when a new version should be enabled allowing them to phase in
the new version or roll back to a previous one.

Options for integrating external applications
While ViewDS includes an internal PEP to protect the directory from unauthorized actions,
Access Sentinel provides PEP solutions to protect external applications.

The following options are available for integrating external applicationswith Access Sentinel:

l PEPs: HTTP PEPs for Apache and IIS

l Application Integration Kits for Java and .NET

l SAML

l REST

l JSON over REST

HTTP PEPs

TheHTTP PEPs allow XACML policy to be applied to theMicrosoft IIS and Apache web
servers. Their main tasks are to:

l allow the web server to ask the PEP to enforce authorization decisions for the HTTP requests
it receives

l send an XACML authorization decision request to the PDP for each HTTP request, and
receive an XACML authorization decision response

l permit or deny access based on the authorization decision

These tasks are illustrated below.

- 9 -



About ViewDS Access Sentinel

Application Integration Kits for Java and .NET

The Access Sentinel’s Application Integration Kits (AIKs) help streamline development of a PEP.
They are C# .NET and Java class libraries that abstract the communication between a bespoke
PEP and the PDP.

Attempting to communicate with the PDP without the library is complex. There are the intricacies
of building the XACML authorization decision request, wrapping and sending it in a SOAP
envelope, and intercepting the PDP’s response. In contrast, the Application Integration Kits
simply require a PEP tomake calls that supply the attributes needed tomake an authorization
decision.

The AIKs are included in the Access Sentinel distribution.

SAML

Access Sentinel supports the SAML 2.0 Profile of XACML, Version 2.0 OASIS standard,
allowing any external applications that also support this standard to interact with Access Sentinel
for authorization decisions.

The implementation allows the use of SAML 2.0 to carry XACML authorization decisions,
authorization decision queries, and authorization decision responses. Themethod usesHTTP
and SOAP as part of the authorization request/response interaction.

REST

Access Sentinel supports the REST Profile of XACML v3.0, Version 1OASIS standard, allowing
any external applications that also support this standard to interact with Access Sentinel for
authorization decisions.

The implementation allows the use of XACML in a RESTful architecture, enabling
interoperability of RESTful Authorization-as-a-Service (AZaaS) solutions. Unlike the SAML
profile, thismethod does not require the use of SOAP and allows XML-based authorization
requests and responses to be transported directly over HTTP.

- 10 -



ViewDS Access Sentinel: Installation and ReferenceGuide

JSON over REST

Access Sentinel supports the Request / Response Interface based on JSON andHTTP for
XACML 3.0, Version 1.0 (Working Draft 14) OASIS draft standard, allowing any external
applications that also support this draft standard to interact with Access Sentinel for authorization
decisions.

The implementation allows the use of JSON to represent authorization request and response
messages that are sent via REST.

- 11 -





ViewDS Access Sentinel: Installation and ReferenceGuide

Installing and

configuring

This section includes the instructions for installing and configuring ViewDS Access Sentinel.

NOTE: The XACML framework, and therefore ViewDS Directory, is a prerequisite for
installing Access Sentinel.

NOTE: An Access Sentinel licence is also required.

To install and configure ViewDS Access Sentinel:

1. If ViewDS Directory is not installed, see theViewDS Directory: Installation andOperation
Guide.

2. Add the Access Sentinel licence to the DSA’s configuration – see the ViewDSManagement
Agent help topic, Import licence information.

3. Read about the XACML configuration parameters.

4. Modify the XACML configuration parameters as required.

5. Optionally, install and configure the Authorization PolicyManager:

a. Installing the Authorization PolicyManager

b. Configuring the Authorization PolicyManger

6. Perform one of the following tasks:

l Deploying the IIS PEP

l Deploying the Apache PEP

XACML configuration parameters
This subsection describes the XACML configuration parameters that apply to XACML policy,
and includes the steps tomodify them through the ViewDSManagement Agent.

l Combining algorithm

l Default version

l RFC822 name attribute

l User base object

- 13 -



Installing and configuring

l User attributes

l Resource attributes

l Policy base object

l Allowed origins

Combining algorithm
ViewDS can evaluate policies from different sources: native ViewDS XACML policy (defined
using the ViewDSManagement Agent or the Authorization PolicyManager) and non-native
XACML policy (either declared in the viewDSXACMLPolicySet attribute or supplied in the
request).

When an internal decision request ismade only native policies are evaluated. If there ismore
than one native policy, the results are combined using a deny override combining algorithm.

However, when an external decision request ismade both native AND non-native policies are
evaluated. If a request instructs Access Sentinel to use only policies supplied within that request
(CombinePolicy=false), then the evaluation of other policies (for example native policies) will
result in a Not Applicable outcome.

If a request instructs Access Sentinel to combine polices supplied within that request and other
policies (CombinePolicy=true) then native polices are evaluated using a deny override
combining algorithm and non-native policies are evaluated using the combining algorithm
specified for that non-native policy set.

The results (native and non-native) are then combined using a Combining Algorithm:

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides
Deny overrides: If any nested item (rule, policy or policy set) evaluates to deny, then the
container (policy or policy set) evaluates to deny; otherwise, if any item evaluates to permit,
then the container evaluates to permit; otherwise, the container evaluates to not-applicable.

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides
Permit overrides: If any nested item evaluates to permit, then the container evaluates to
permit; otherwise, if any item evaluates to deny, the container evaluates to deny; otherwise,
the container evaluates to not-applicable.

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-permit
Deny unless permit: If any nested item evaluates to permit, then the container evaluates to
permit; otherwise, the container evaluates to deny.

l urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-unless-deny
Permit unless deny: If any nested item evaluates to deny, then the container evaluates to
deny; otherwise, the container evaluates to permit.

For further information see the XACML 3.0 specification.

- 14 -

http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-os-en.html


ViewDS Access Sentinel: Installation and ReferenceGuide

Default version
Every XACML policy has a version number.

By default, when there aremultiple policies or policy sets with the same identifier, the Policy
Decision Point (PDP) uses the one with the highest version number. Alternatively, if a Default
Version is defined, the PDP uses the policy or policy set with the highest version number less
than or equal to this value.

This parameter only applies to XACML policy that was not defined through the ViewDS
Management Agent or the Authorization PolicyManager.

RFC 822 name attribute
This configuration parameter identifies a directory attribute that conforms to RFC 822 format. It
allows the Policy Decision Point (PDP) to identify a subject by its email address.

This parameter applies to all XACML policy.

For more information, see Attribute look-up.

User attributes
The directory attributes the Policy Decision Point (PDP) will pre-fetch when it needs to obtain a
directory attribute from a user's entry.

This parameter applies to all XACML policy.

Resource attributes
The directory attributes the Policy Decision Point (PDP) will pre-fetch when it needs to obtain a
directory attribute from a resource entry (see Attribute look-up).

This parameter applies to all XACML policy.

User base object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in order to
find a user entry. (The directory acts as a Policy Information Point by storing information that can
influence an access decision.)

This parameter applies to all XACML policy.

Policy base object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in order to
find a policy or policy set.

This parameter applies to all XACML policy.

- 15 -



Installing and configuring

Allowed origins
Defines a cross-origin resource sharing (CORS) policy.

A CORS policy specifies the origins in HTTP requests that the Policy Decision Point (PDP)
accepts.

Each item in the list is a regular expression (see https://www.w3.org/TR/xmlschema-2/#regexs)
that ismatched against the origin in a request. The origin is accepted if it matches at least one
expression and rejected if it matches none of the expressions.

Consider the following example:
http://.*\.example\.com(:[0-9]+)?

This regular expressionmatches origins that specify any port, or no port, in any sub-domain of
example.com.

If no expressions are defined then all origins are rejected.

If an HTTP request does not specify an origin it is always accepted.

Modifying the XACML configuration
To set the XACML configuration parameters through the ViewDSManagement Agent:

1. At the bottom of the left pane, clickServer View.
2. In the left pane, click the appropriate server.

3. In the right pane, click theXACML Config tab.
4. Complete the boxes in the XACMLConfig tab as required.

5. At the bottom of the tab, clickSet XACML Configuration.

Installing the Authorization Policy Manager
The Authorization PolicyManager is a stand-alone PAP that can be installed on any platform. It
provides the same XACML access control functionality as the ViewDSManagement Agent.

To install the application:

1. Install Java SE Runtime (32-bit).

2. From the Access Sentinel distributionmedia, unzip the file PAPui.zip

Starting the Authorization Policy Manager
To start the application either:

l In the extracted folder, double-click PAPui.jar

l From a command shell, enter PAPui.jar

Trusted mode

When the application is in 'trustedmode', appropriate access is granted to a non-administrative
user who has been delegated administration rights to XACML policy (see Composition-time
delegation).

- 16 -

https://www.w3.org/TR/xmlschema-2/#regexs


ViewDS Access Sentinel: Installation and ReferenceGuide

To start the application in trustedmode, enter either of the following from a command shell:
PAPui.jar --trusted

PAPui.jar -t

Configuring the Authorization Policy Manager
Configuring the application involves the following tasks:

l Installing a user certificate

l Connecting to a ViewDS Directory

l Getting started

l Setting local file security

Installing a user certificate
A user must be authenticated before they can connect the Authorization PolicyManager to a
ViewDS server.

There are two options available:

l Simple authentication – the user enters the username and password assigned to their entry
in the ViewDS directory. With simple authentication, the user has non-administrator access to
XACML policy. However, the user will have administrator access to specific XACML policy if
the application is started in trustedmode and an administrator has delegated trust to the user
through composition-time delegation.

l Certificate based authentication – a user certificate needs to be installed and imported into
the Authorization PolicyManager. With certificate based authentication, the user has
administrator access to all XACML policy.

To install a user certificate (PKCS #12 file):

1. Add the user certificate to the trusted subdirectory below the ViewDS install directory.
For example, on aWindows installation:
%VFHOME%\setup\trusted

Where %VFHOME% is the ViewDS install directory.

For further details, see Installing credentials in theViewDS Directory: Installation and
Operation Guide.

2. Import the PKI credentials into the Authorization PolicyManager:

a. From the Authorization PolicyManager'smenu bar, clickTools followed byKeystore. A
new window is displayed.

b. Click theYes with password button to create a keystore for the application.
c. Enter a password and clickOK. The Key Store window is displayed.

d. In theKey Storewindow, click Import and follow the prompts to import the user
certificate into the keystore.

- 17 -



Installing and configuring

Connecting to a ViewDS Directory
To connect the Authorization PolicyManager to a ViewDS Directory Server Agent (DSA):

1. ClickFile followed by New Session. The Session window is displayed.

2. Enter a sessionName of your choice to appear in the left pane.
3. In theHost box, enter the address of your Directory Server (DSA). For example, if the

Authorization PolicyManager is on the same host as the DSA, enter localhost.

4. Enter thePort number to connect to on the DSA (by default, 3000).

5. For simple authentication, enter yourUsername andPassword in the Simple tab.
Otherwise, for strong authentication, click theCertificate tab and select aKey Alias and
enter your Password.

6. Select theConnect immediately checkbox.
7. ClickSave. The session is displayed in the left pane.

Getting started
This task introduces you to the interface:

1. In the left pane, right-clickDeltawing and from the drop-downmenu clickAdd XACML
Access Control Domain. Three tabs are displayed in the right pane: Policy Versions,
Attributes, and Roles. The interface is equivalent to the XACMLAC tab in the ViewDS
Management Agent. Both allow you to perform exactly the same tasks.

2. In the right pane, click theNew button. TheNew XACML Policywindow is displayed.

3. In the Label box, enter a name, such as 'test'.
4. ClickSave to accept the defaults. A new policy is listed in the Policy Versions tab.

5. To remove the XACMLAccessControl Domain, right-click theDeltawing entry followed by
Remove XACML Access Control Domain.

Setting local file security
The in-application help is displayed in the user's browser. The browser must allow javascript to
interact with the local file system for hypertext links in the help to work. Thismay require
additional configuration of the browser.

If the hypertext links in the Authorization PolicyManager help do not work in the Chrome
browser for Windows:

1. Close all instances of Chrome.

2. Enter at the command line: chrome.exe --allow-file-access-from-file

For Firefox:

1. In the browser's address bar, enter about:config and press Enter. The browser’s
preferences are displayed.

2. In the Search box, enter privacy.file_unique_origin.

3. Set the Value of privacy.file_unique_origin to false.

- 18 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Deploying the IIS PEP
The IIS PEP is an IIS managedmodule that allows aMicrosoft IIS web server to delegate
authorization of HTTP requests to Access Sentinel. It can be deployed to protect access to
specific sets of pages in a site.

Deploying the IIS PEPmodule involves:

l Enabling .NET extensibility for IIS

l Adding the PEP to the IIS

l Configuring the IIS PEP

l Configuring for anonymous access

l Testing the deployment

Enabling .NET extensibility for IIS
To enable .NET extensibility for IIS onWindows 10:

1. From theWindowsControl Panel, selectPrograms and Features.
2. ClickTurn Windows features on or off. TheWindows Featureswindow is displayed.

3. Expand Internet Information Services, thenWorld Wide Web Services, and
Application Development Features.

4. Select the .NET Extensibility 3.5 checkbox.
To enable .NET extensibility for IIS onWindowsServer 2019:

1. Open Server Manager.

2. From the Dashboard, clickAdd roles and features. The Add Roles and FeaturesWizard
opens.

3. ClickNext until the Features list is displayed.
4. Select .NET Framework 3.5 Features then clickNext followed by Install.

Adding the PEP to IIS
To add the PEPmodule to a website:

1. From the Access Sentinel distributionmedia, copy IISpepModule.dll and
pdpLiaison.dll to the site's bin folder (create a bin folder if one does not exist).

2. Add IISpepModule.dll to the required website as amanagedmodule. For example, to
add the PEP as amanagedmodule through IIS Manager:

a. From IIS Manager, click the required website in the Connections pane.

b. In the central pane, double-clickModules. Themodules are listed.
c. In theActions pane on the right, clickAdd Managed Module. The AddManaged

Module window is displayed.

d. In theName box, enter Access Sentinel PEP.

e. In the Type box, enter IISpepModule.PEP, then clickOK.

- 19 -



Installing and configuring

Configuring the IIS PEP
To configure the IIS PEP:

1. Create a folder for the PEP’s log file (for example, c:\peplog).

2. Grant full access to the PEP’s log file:

a. FromWindowsExplorer, right-click the log-file folder (for example, c:\peplog) and
clickProperties. A Properties window is displayed.

b. Click theSecurity tab.
c. Click theEdit button. The Permissionswindow is displayed.

d. Click theAdd button. The Select Users or Groupswindow is displayed.

e. In the text box, enter Network Service and then clickOK. The window closes and
NETWORK SERVICE is added to the Security tab.

f. ClickNETWORK SERVICE followed by theAllow checkbox for Full control.

g. ClickApply and thenOK.
3. From the Access Sentinel distributionmedia, copy pepConfig.txt to the IIS folder (for

example, c:\Windows\System32\inetsrv\).

4. Set the configuration-file parameters (see below) in the pepConfig.txt file as required.

IIS PEP configuration-file parameters

The IIS PEP has a configuration file pepConfig.txtwith the following parameters:

XACMLHost The host name or IP address of the host on which the ViewDS DSA is running.
For example: localhost

XACMLPort The soapAddress on the ViewDS DSA where the PDP listens for authorization
decision requests (seeModifying the SOAP address). Default: 3009

The following is an example configuration file:

XACMLHost localhost
XACMLPort 3009

Configuring for anonymous access
To configure the ViewDS DSA for access by the PEP as an anonymous user:

1. Open the ViewDSManagement Agent.

2. At the bottom of the left pane, clickServer View.
3. In the left pane, click the appropriate server.

4. In the right pane, click the Trust tab.
5. Within the Trust tab, click theAnonymous Privilege tab.
6. Select theXACML Protocol checkbox.
7. In theAccess Rights box, click read.
8. ClickSave.

- 20 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Test the deployment
To test the deployment:

1. Attempt to access the protected website. You should be denied access, which is the default
behaviour if no XACML policy has been defined.

2. Optionally, if required, perform the task Tracing decisionmaking.

3. Define an XACML policy by following the HTTP PEP tutorial.

Deploying the Apache PEP
The Apache PEP protects web pages hosted by an Apache web server, which implement HTTP
authentication. It requires Apache HTTP Server version 2.2.

Deploying the Apache PEPmodule involves:

l Installing and configuring the Apache PEP

l Configuring for anonymous access

l Testing the deployment

Installing and configuring the Apache PEP
1. From the Access Sentinel distributionmedia, copy the PEPmodule mod_authz_

xacml.so to the Apachemodules directory. For Windows thismay be, for example,
\Program Files (x86)\Apache Software

Foundation\Apache2.2\modules.

2. In the Apache configuration file, add a LoadModule directive for the Apache PEP:
modules/mod_authz_xacml.so

3. Each directory that hasHTTP authentication and will be protected by the Apache PEP
requires the following parameters in the Apache configuration file:
XACMLHost "localhost"

XACMLPort 3009

XACMLTrace on

Require permit

The parameters are described below.

Apache PEP configuration parameters

The following PEP configuration parameters can appear in the Apache configuration file:

XACMLHost The host name of the ViewDS server (includes the PDP).

XACMLPort The ViewDS server's soapAddress (default, 3009) where the PDP listens
for authorization decision requests (seeModifying the SOAP address).

XACMLTrace Optional. Determineswhether the PEP’s authorization decision requests will
switch on decision tracing in the PDP. (Tracing is written to the server’s
query log.)

- 21 -



Installing and configuring

Require

permit
Is required to invoke PEP. It is a standard Apache directive, but the value of
permit is specific to Access Sentinel.

XACML

Authoritative
Optional. Determineswhether thismodule is the authoritative authorisation
module. When absent, the default is on (the recommended setting).

Example configuration

This example configuration applies the Apache PEP to a directory that has basic authentication
in aWindows environment:

LoadModule authz_xacml_module “modules/mod_authz_xacml.so”

<IfModule authz_xacml_module>

<Directory "<path to directory with basic HTTP authentication>">

AuthType Basic

AuthName "Basic"

AuthUserFile "<path to directory with basic HTTP auth>/users"

XACMLHost "localhost"

XACMLPort 3009

XACMLTrace on

Require permit

AllowOverride None

Options FollowSymLinks

</Directory>

</IfModule>

This example references a users file, which is described in Apache’s documentation for HTTP
basic authentication (see http://httpd.apache.org/docs/2.2/mod/ mod_authn_file.html and
http://httpd.apache.org/docs/2.2/mod/ mod_authz_groupfile.html).

Configuring for anonymous access
To configure the ViewDS DSA for access by the PEP as an anonymous user:

1. Open the ViewDSManagement Agent.

2. At the bottom of the left pane, clickServer View.
3. In the left pane, click the appropriate server.

4. In the right pane, click the Trust tab.
5. Within the Trust tab, click theAnonymous Privilege tab.
6. Select theXACML Protocol checkbox.
7. In theAccess Rights box, click read.
8. ClickSave.

- 22 -

http://httpd.apache.org/docs/2.2/mod/mod_authn_file.html
http://httpd.apache.org/docs/2.2/mod/mod_authz_groupfile.html


ViewDS Access Sentinel: Installation and ReferenceGuide

Test the deployment
To test the deployment:

1. Attempt to access the protected website. You should be denied access, which is the default
behaviour if no XACML policy has been defined.

2. Optionally, if required, perform the task Tracing decisionmaking.

3. Define an XACML policy by following the HTTP PEP tutorial.

Modifying the SOAP address
The IIS and Apache PEPs exchange authorization decision requests and responseswith the
PDP. Each is wrapped in a SAML assertion, inserted into a SOAP envelope, and then added to
the payload of an HTTP request or response.

The PDP listens for authorization decision requests on the SOAP address declared in the
ViewDS server’s configuration. By default, the SOAP address is 3009 (the server’s baseport
address, 3000, plus 9).

Tomodify the SOAP address:

1. Start the ViewDSManagement Agent.

2. At the bottom of the left pane, clickServer View.
3. In the left pane, click the appropriate server.

4. In the right pane, click theConfiguration tab.
5. Within theConfiguration tab, clickAddresses.
6. Double-click in theValue column next toSOAP Address.
7. Enter the appropriate address and then clickSet.

Tracing decision making
When the PEP sends an authorization decision request and tracing is enabled:

l The PDP generates a trace of the policies evaluated and the result of each. It logs the trace in
its query log (see the ViewDSManagement Agent help topic,Working with the query log).

l The PDP also returns the trace in its authorization decision response. The PEP then logs the
trace in the directory identified by the PEP’s configuration-file parameter LogPath This
functionality is currently only available for the IIS PEP.

To enable tracing:

1. Set the PEP’s configuration-file parameter XACMLTrace to on (see the IIS PEP
configuration parameters or Apache PEP configuration parameters).

2. Enable the DSA’s query log:

a. From the ViewDSManagement Agent, click theServer View button.

b. In the left pane, click your DSA.

c. In the right pane, click theConfiguration tab followed byRuntime Settings.

- 23 -



Installing and configuring

d. For the 'Query logging’ setting, select on in theCurrent andOn Start Up columns.
e. ClickSet.

3. Define an XACML attribute with the following settings:

l Label equals tracing (for example)

l Category equals urn:oasis:names:tc:xacml:3.0: attribute-
category:action

l Identifier equals urn:oasis:names:tc:xacml:1.0: action:action-id

l Data Type equals anyURI

4. Create a new rule within the policy. The rule's condition should be that the above XACML
attribute is equal to http://viewDS.com/xacml/environment/trace

- 24 -



ViewDS Access Sentinel: Installation and ReferenceGuide

About XACML framework

and policy

This section provides the background information you will need to write XACML policy.

It describes the following:

l XACML components

l XACML terms to remember

l Introduction to XACML policy

l More about XACML policy

l Attribute versus role-based access control

XACML components
We’ll start by looking at how Access Sentinel's implementation of XACML can be used to protect
web pages.

Consider the following illustration.

The steps shown in the illustration are described below.

- 25 -



About XACML framework and policy

1. A user attempts to view aweb page hosted by a web server.

2. The web server asks the Policy Enforcement Point (PEP) to form an ‘authorization decision
request’.

3. The PEP sends the ‘authorization decision request’ to the Policy Decision Point (PDP). The
authorization decision request includes XACML attributes that identify, among other things,
the user and the web page they are attempting to access. (See XACML attributes provided
by a PEP for details.)

4. The Policy Decision Point (PDP) determineswhether access should be permitted. It does so
by accessing the appropriate XACML policy. The policy instructs the PDP to consider which
web page is being accessed and bywhich user. The user is identified according to directory
attributes in the Policy Information Point (PIP).

5. The PDP returns an ‘authorization decision response’ to the PEP.

6. The web server acts on the decision to permit or deny access to the web page.

XACML terms to remember
There are a couple of important XACML terms to remember:

l Target – the set of resources protected by the policy.

l Resource – the specific item (e.g. web page) within the target that the subject is attempting to
access.

l Subject – the user attempting to access a resource.

l Action – the action attempted by the subject (e.g. view a web page).

These terms are illustrated below:

Introduction to XACML policy
The ViewDS implementation of an XACML policy comprises:

l XACMLAccessControl Domain

l Status and version

l XACML attributes

l Rules

Each is described below.

- 26 -



ViewDS Access Sentinel: Installation and ReferenceGuide

XACML Access Control Domain
An XACMLAccessControl Domain is a specific area of a DIT that contains one or more XACML
policies.

NOTE: In the ViewDS XACML framework, the default behaviour is to deny access to the
entities within an AccessControl Domain. (This does not apply to administrative users of
the ViewDSManagement Agent, who bypass all access controls.)

For example, when working with the ViewDS directory and the internal PEP, an XACMLAccess
Control Domain is an area of the directory where the XACML access controls apply. The entry at
the top of the domain is termed the access control administrative point. By default, ViewDS
denies access to all entries within the domain.

Status and version
Every XACML policy has a status and version.

A policy can havemultiple versions, each with a unique version number. A version also has a
status that identifies whether it is 'locked' and 'active'.

Only one version of a policy can be 'active’. This is the version that currently applies. You can
therefore test a new version of a policy and then roll-back to a previous version if necessary.

A 'locked' version cannot bemodified. However, you can create a new version based on an
existing locked version. This offers a level of version control.

Status: active,locked

Version: 1.1

XACML attributes
XACML is based on the concept of attributes.

The PAP uses XACML attributes to identify the subject, resource, action and environment
information within a rule. The PEP sends requestsmade up of XACML attributes to the PDP to
convey information about the subject, resource, action and environment. The PDP then
compares these to attribute values in a policy tomake access decisions.

The XACML standard defines four categories for attributes:

l Subject – identifies the subject attempting to access a particular resource.

l Resource – identifies the resource the subject is attempting to access.

l Action – identifies the action the subject is attempting to perform on the resource (for example,
read, modify).

l Environment – identifies environmental factors such as day of the week and time of day.

It is permissible within the XACML standard for any of these four categories to be sub-divided or
for other new attribute categories to be added.

- 27 -



About XACML framework and policy

For details of the XACML categories and data types of the attributes provided by the PEP, see
XACML attributes provided by a PEP.

For an XACML attribute to be included in policy rules, it must first be declared in the XACML
AccessControl Domain. Declaring an XACML attribute involves giving it a ‘user-friendly’ name.
This is important because XACML attributes are identified by long URIs or complex XPath
expressions that are unwieldy when creating rules.

You can declare two different types of attributes: attribute designators and selectors.

Attribute Designators

An attribute designator comprises the Category, AttributeId and DataType URIs of a
particular XACML attribute.

For some XACML attributes, the declaration also includes amapping to a directory attribute in an
entry that uniquely identifies a subject or resource.

Attribute designators allow a policy to specify an attribute value with a given category, identifier
and data type. The PDP will then look for that value in the request, or elsewhere, if nomatching
values can be found in the request (see Attribute look-up).

Attribute Selectors

In addition to attributes, XACML requests can contain XML documents for each category. For
example, an XML document might describe the subject or be the actual resource being
accessed.

Attribute selectors allow a policy to look for attribute values in an XML document using XPath
queries. XPath is a language, based on a tree representation of XML documents, which provides
the ability to navigate the tree and select nodes using a variety of criteria.

An attribute selector comprises a category, data type and an XPath expression. Together these
are used to resolve a set of attribute values in the request document.

Attribute selectors can be used within XACML policy expressions in the sameway as attribute
descriptors. For example, consider an XACML request that contains an XML document which is
the resource a user is attempting to access. An attribute selector can include an XPath
expression to find elements in the document named PublicationDate. An XACML policy can then
include a condition that denies access if the PublicationDate ismore than five years ago.

The following are currently supported:

l the definition of attribute selectors within the Authorization PolicyManager (and the ViewDS
Management Agent)

l the ability to use and evaluate attribute selectors within XACML policies

NOTE: Attribute selectors are not applicable to the ViewDS XACML framework or HTTP
PEPS. This is because they do not make use of XML documents within authorization
decision requests.

- 28 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Rules
Every XACML policy includes a rule.

A rule allows the Policy Decision Point (PDP) to determine whether a subject should be
permitted or denied access to a resource. Each has a target, scope, an effect (permit or deny
access) and a condition.

The target identifies the resources protected by the policy. The scope is used when defining
policy for hierarchical resources, such as directory entries. It determineswhether the policy
applies to a single target resource, or to a target resource and all its subordinates.

The condition incorporates XACML attributeswhich the PDP uses to identify the resource and
subject. It determineswhether the rule’s effect should be applied.

A simple example rule is shown below.

Rule
Target: Documents
Scope: subtree
Effect: Permit access (if the following condition is true)
Condition:
resource has attribute webpage = 'index.html' AND
subject has attribute role = Board Member AND
action = READ

The condition is true if the subject is a BoardMember attempting to view the resource
’index.html’.

For further information about rules, seeMore about XACML policy.

Also to consider is that there are two kinds of rules: attribute- and role-based access control
(ABAC andRBAC).

More about XACML policy
This section describes attribute look-up along with the following concepts relating to rules:

l Obligations and advice

l Delegation

l Precedence

Attribute look-up
Access Sentinel has the ability to look-up subject and resource attributes that are not provided in
an authorization decision request. (This functionality only applies to requests from applications
external to ViewDS.)

- 29 -



About XACML framework and policy

Subject attributes

If subject attributes are not provided in an authorization decision request, the Policy Decision
Point (PDP) will attempt to look them up in the Policy Information Point (the ViewDS directory).
For this to occur the request must include the following XACML attribute:
urn:oasis:names:tc:xacml:1.0:subject:subject-id

The PDP will look up the subject-id XACML attribute definition fromwithin the XACMLAccess
Control Domain to identify if it has beenmapped to a directory attribute. If it has, then the PDP
will used this directory attribute to search ViewDS for the subject. If the subject-id does not have
a directory attributemapping, it will use the following defaults based on the subject-id data type
(see XACMLConfiguration Parameters):

l String – the Policy Decision Point looks for a directory entry whose viewDSUserName
attribute equals the string value specified by subject-id.

l x500Name – the Policy Decision Point looks for a directory entry whose LDA Distinguished
Name equals the specified X500 name specified by subject-id.

l rfc822Name – the Policy Decision Point looks for a directory entry that has a value of the
attribute type identified by the rfc822Name-attribute that is configured within the XACML
Configuration setting.

The PDP only expects to find a single subject entry within ViewDS. If multiple entries are located
it will consider the situation to be ambiguous and will not use any of the subject attributes from
within the PIP.

Resource attributes

If required resource attributes are not provided in an authorization decision request, the PDP will
attempt to look them up in the PIP (the ViewDS directory). For this to occur the request must
include the following XACML attribute:
urn:oasis:names:tc:xacml:1.0:resource:resource-id

The PDP will look up the resource-id XACML attribute definition fromwithin the XACMLAccess
Control Domain to identify if it has beenmapped to a directory attribute. If it has, then the PDP
will used this directory attribute to search ViewDS for the resource.

The PDP only expects to find a single resource entry within ViewDS. If multiple entries are
located it will consider the situation to be ambiguous and will not use any of the resource
attributes fromwithin the PIP.

Obligations and advice
Obligations and advice are features of XACML 3.0 that have been implemented in ViewDS so
that it can be used to convey directives to applications that define themwithin an XACML
response. An obligation is amandatory directive whereas advice is optional.

To illustrate, an obligation to add a log entrymight be associated with permitting access to a
highly restricted resource. In this case, when the application is told that access is permitted it is

- 30 -



ViewDS Access Sentinel: Installation and ReferenceGuide

also told that it is obliged to log the access for auditing purposes. If the application cannot perform
the logging operation, it will refuse access to the resource.

Advice is similar to an obligation, except execution of advice by the application is optional.

For example an XACML responsemight deny access to a document on the weekend and come
with the advice to show amessage to the user that access is only available on week days.

The specific obligations and advice implemented by a given application are defined by that
application. Access Sentinel merely enables you to associate such obligations and advice with
authorization rules and so use them in access control decisions.

NOTE: Neither ViewDS nor the HTTP PEPs define any obligations or advice for use in
creating access control policy. So, if a policy that grants access contains an obligation,
then ViewDS and the HTTP PEPswill not permit the operation due to their inability to
process the obligation. Both PEPs ignore advice.

Delegation
ViewDS Access Sentinel allows an administrator to delegate trust to non-administrative users.

The primary component of delegation is the administrative rule. For context, compare its purpose
with that of an access rule:

l Access rule - determineswhether ViewDS should grant or deny access to a resource.

l Administrative rule - determines the who, what and where of a delegation. That is, who it
applies to, along with the scope and constraints.

To expand on this distinction, consider that Access Sentinel ignores an access rule unless:

l it waswritten by an administrator; or

l it is authorized by a chain of administrative rules, where the final rule in the chain waswritten
by an administrator.

The rule is then deemed ‘trusted’.

Only an administrator canmanage trusted rules. An administrator is a trusted user of the
Authorization PolicyManager or ViewDSManagement Agent. (Note that the ViewDS
Management Agent can only be accessed by an administrator, as it requires certificate-based
authentication. The Authorization PolicyManager offers both certificate-based and simple
authentication to allow access by non-administrative users.)

However, an administrator can delegate authorization tomanage trusted rules. The
administration of rules can therefore be decentralised by delegating trust to users of the
Authorization PolicyManager.

Access Sentinel provides two ways to delegate trust:

l Evaluation-time delegation

l Composition-time delegation

Each is discussed below.

- 31 -



About XACML framework and policy

Evaluation-time delegation

An administrative rule can be used to delegate trust to a non-administrative user of the
Authorization PolicyManager.

The user would be trusted tomaintain the rules in a policy, but within a specified scope and under
specified constraints.

To illustrate, an administrative rulemight be written to authorize access ruleswritten by a Sales
Manager (a non-administrative user). However, the administrative rule could also specify that
the SalesManager's rules only apply to the ‘Sales andMarketing’ area of the directory.

Later, when Access Sentinel evaluates an authorization request to access a resource, it
considers all relevant rules, including those relating to delegation. For the above example,
Access Sentinel would determine whether to apply the rules written by a SalesManager. If the
authorization request related to the ‘Sales andMarketing’ area of the directory, then Access
Sentinel would apply the SalesManager’s rules. Otherwise, it would simply ignore them.

Composition-time delegation

This is another way for an administrator to delegate trust to a non-administrative user.

An administrator can create an access rule that delegates administrator rights within anXACML
AccessControl Domain or within anXACMLAccessControl Subdomain. Each option is
described below.

XACML Access Control Domain

To illustrate composition-time delegation within a domain, consider the following illustration.

In this example an administrator has created:

l anXACMLAccessControl Domain at the Deltawing entry

And written an access rule that:

l delegates trust by permitting the action ‘AssertTrust’ by a non-administrative user, Margaret
Hunter

Consequently, after starting the Authorization PolicyManager with the ‘-trusted’ switch,
Margaret Hunter would be considered an administrator for the purpose of managing policy within
the XACMLAccessControl Domain. There would, however, be no restrictions on the non-

- 32 -



ViewDS Access Sentinel: Installation and ReferenceGuide

administrative user. Margaret Hunter would be able tomodify every aspect of the access
controls in the domain: rules, attributes, versions, policies, roles, and named expressions.

The only way to impose a restriction is to use precedence. For example, the administrator could
amend the access policy so that the non-administrative user can onlymanage policy containing
rules with a precedence greater than 1. Therefore, a rule with a precedence of 0 or 1 could only
bemodified by an administrator, and would always override thosemanaged by the non-
administrative user.

This restriction would only apply to a policy’s rule as attributes, versions, roles and named
expressions cannot be assigned a precedence.

XACML Access Control Subdomain

To illustrate composition-time delegation within a subdomain, consider the following illustration.

As in the previous example, the administrator has created anXACMLAccessControl Domain at
the Deltawing entry. However, this time, they have also created:

l anXACMLAccessControl Subdomain at the Executive entry

The administrator has taken the same access rule shown in the previous example, and this time
applied it to the XACMLAccessControl Subdomain. Consequently, after starting the
Authorization PolicyManager with the ‘-trusted’ switch, Margaret Hunter would be considered
an administrator for the purpose of managing policy within the subdomain.

Aswell as any restrictions declared by the access rule, there are inherent restrictions imposed by
this type of delegation. The non-administrative user can create versions, policy and named
expressionswithin the subdomain, but they cannot create attribute and role definitions. The only
attribute and role definitions available to the non-administrative user are those inherited by the
sub-domain.

Precedence
By default the rule in an XACML policy has a precedence of 0 (zero).

When the Policy Decision Point (PDP) receives an ‘authorization decision request’ it evaluates
the rules with a precedence of 0. This gives a result of either 'permit', 'deny', 'indeterminate' or
'not applicable'.

- 33 -



About XACML framework and policy

When the result is 'not applicable', the PDP then evaluates rules with a precedence of 1. If this
evaluation returns the same result, the PDP thenmoves onto rules with a precedence of 2, and
so on. At any stage, if the result is anything but 'not applicable', the evaluation ends and PDP
returns the result to the Policy Enforcement Point (PEP).

A rule's precedence can be set through either the ViewDSManagement Agent or Authorization
PolicyManager. It can be set to zero or any integer value (they do not need to be sequential) in
order to override rules with a higher precedence value.

In summary, a rule with a precedence of zero overrides a rule with a precedence of 1, for
example.

Attribute- versus role-based access control
The ViewDS XACML framework supports both attribute-based access control (ABAC) and role-
based access control (RBAC) rules.

Attribute-based access control
With ABAC, the attributes associated with the subject, action, resource or environment are used
to construct conditions. These conditions compare attributes to static values, or to one another
(relation-based access control), to determine whether access should be permitted or denied.

To illustrate, here is an example ABAC rule:

Permit access if:
action = read AND
resource = sales.doc AND
subject’s title = ‘Assistant’

The following illustration includes the example rule.

The steps in the illustration are as follows:

1. A user attempts to read the sales.doc file.

2. ViewDS evaluates the XACML policy. The XACMLAttributes definition tells ViewDS to
obtain the 'subject's title' from the value of the title attribute in the user's directory entry.

3. As the user's title attribute is set to 'Assistant', all the clauses in the ABAC rule are true
and ViewDS permits access to the document.

- 34 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Role-based access control
RBAC also uses attributes to construct conditions. However, unlike an ABAC rule, an RBAC
rule includes a role condition that is evaluated against a role hierarchy.

For example, here is an example RBAC rule:

Permit access if:
action = read AND
resource = sales.doc AND
subject’s role = Assistant

Aside from the 'role' clause, this is identical to the ABAC example. However, another important
distinguishing feature of RBAC is that it includes a role hierarchy.

A role hierarchy defines permission inheritance. It allows ViewDS to evaluate a user's access
rights according to their role's position in the hierarchy. However, while each role inherits access
rights from its subordinates, this only applies to the 'permit' permissions. In the following
example, the role 'Executive' inherits permissions from the role 'Assistant'.

When ViewDS evaluates the previous rule that permits access to an 'Assistant', it also evaluates
the role hierarchywhich defines that an 'Executive' also has this permission. However, before
ViewDS can evaluate the role hierarchy, it first needs tomap the user (the subject) to a role. This
role mapping can be either:

l Static - static roles are obtained from a directory entry or the XACML request.

l Dynamic - dynamic roles are allocated at run-time by evaluating role enablement rules.
Both options are described below.

- 35 -



About XACML framework and policy

Static roles

With static roles, the policy's role definition identifies an attribute in the ViewDS directory.

The above illustration shows an XACML policy that includes a static role, which ismapped to the
title attribute in a user's directory entry.

The steps in the illustration are as follows:

1. A user attempts to read the sales.doc file.

2. ViewDS evaluates the XACML policy. The definition of role tells ViewDS that the subject's
role is the value of their title attribute in the directory.

3. From the value of the user's 'title' attribute, ViewDS determines that user's role is 'Executive'.

4. From the policy's role hierarchy, ViewDS identifies that a 'Executive' inherits permissions
from an 'Assistant'. ViewDS therefore grants the user access to the document.

With static roles, the names of the roles in the role hierarchymust exactlymatch values in the
corresponding directory attribute.

As you can probably see, the only real difference between RBAC with static roles and ABAC is
the permission inheritance defined by a role hierarchy.

Role enablement

Role enablement provides greater flexibility to RBAC by allowing ViewDS to assign roles
dynamically. It does this by evaluating a policy's role enablement rules.

To illustrate, consider these example role enablement rules:

Assign the role of Executive if:
subject's title attribute contains 'Director' OR 'Chief Executive Officer' OR 'BoardMember'

- 36 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Assign role of Assistant if:
subject's title attribute contains 'Executive Assistant' OR 'Personal Assistant' OR
'Administrative Assistant'

When ViewDS assesses the first rule, it will assign the role of 'Executive' to the subject (user) if
their title attribute contains either 'Director', 'Chief Executive Officer' or 'BoardMember'.

Finally, another example that illustrates the flexibility provided by role enablement:

Assign the role of Contractor if:
subject's emailAddress attribute contains '@third-party-contractor'

With this example, ViewDS will assign the role of 'Contractor' to the user if the emailAddress
stored in their directory entry contains the specified string.

- 37 -





ViewDS Access Sentinel: Installation and ReferenceGuide

XACML tutorials

This chapter's tutorials take you through defining and applying XACML policy to a resource:

l ViewDS PEP tutorial for ABAC

l ViewDS PEP tutorial for RBAC

l HTTP PEP tutorial

ViewDS PEP tutorial: ABAC
This tutorial takes you through how to define an XACML policy that includes attribute-based
access control (ABAC). The policy will apply to an area of the Deltawing directory that is
provided with the ViewDS Directory.

The tutorial includes the following stages:

1. Requirements

2. Create an XACMLAccessControl Domain

3. Create an XACML policy

4. Declare XACML attributes

5. Define the first rule

6. Define the first rule's condition

7. Define the second rule

8. Define the second rule's condition

9. Activate the policy

10. Test the policy

11. Lock the policy

Requirements
This tutorial's requirement is for a policy that gives one user, Andrew Sherman, the privileges to
modifymeeting room entries in the Deltawing directory.

Both Andrew Sherman and ameeting room can be identified in the Deltawing directory by their
entries' directory attributes:

l Andrew can be identified by his entry's viewDSUserName attribute which is set to 'asherma’.

l ameeting room entry can be identified by its businessCategory attribute which is set to
'Meeting Room’.

- 39 -



XACML tutorials

When a directory user (subject) attempts tomodify an entry (resource), the Policy Enforcement
Point (PEP) will send an authorization decision request to the Policy Decision Point. The request
includes the values of directory attributes in the subject and resource entries, plus a value to
identify the attempted action. These values are held in XACML attributes.

XACML attributes

Before an XACML attribute can be used by the PAP, it must first be declared in the XACML
AccessControl Domain.

Each declaration has a 'Label' that will appear in a rule’s condition, an XACML category, and
may also require amapping to a directory attribute.

In this tutorial, the following declarations are required.

Label XACML attribute category XACML attribute identifier XACML data
type

User Name urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:
subject:subject-id

string

Action urn:oasis:names:tc:xacml:3.0:attribute-
category:action

urn:oasis:names:tc:xacml:1.0:
action:action-id

string

Business
Category

urn:oasis:names:tc:xacml:3.0:attribute-
category:resource

businessCategory
(urn:oid:2.5.4.15)

string

Note that an XACML attribute’s category corresponds to its purpose, as shown in the illustration
above.

Also note that Business Category is mapped to the directory attribute
businessCategory through its XACMLAttribute Identifier. However, User Name does not
need to bemapped to a directory attribute because it is one of three values the PEP provides to
identify the subject (see XACML attributes provided by the ViewDS PEP).

Rules

Two rules are required. The first will permit Andrew Sherman tomodifymeeting room entries in
the directory. The second will permit all users to search and view entries in the directory. This is
necessary because the default behaviour is to deny accesswithin an AccessControl Domain,
unless explicitly permitted.

- 40 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Rule 1

The first rule’s target, scope, effect and condition are shown below.

Rule 1:
Target: Deltawing
Scope: subtree
Effect: Permit (if the condition is true)
Condition:
resource has attribute Business Category = 'Meeting Room’ AND
subject has attribute User Name = 'asherma' AND
(Action = 'ModifyEntry’ OR Action = 'AddType' OR
Action = 'RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

The rule’s target will be the entry at the root of the Deltawing directory; its scope will be the entire
subtree below the root entry; and its effect will be to permit access if the condition is true.

The condition will be true when the user with the User Name 'asherma' (subject) attempts one
of the actions on ameeting room entry (resource).

Note that omitting the resource clause wouldmake the rule more general so that it applied it to all
entries in the directory.

Rule 2

The second rule’s target, scope, effect and condition are shown below.

Rule 2:
Target: Deltawing
Scope: subtree
Effect: Permit (if the condition is true)
Condition:
Action = 'ReadEntry’ OR Action = 'BrowseEntry' OR
Action = 'ReturnDN' OR Action = 'ReadType' OR
Action = 'FilterMatchType' OR Action = 'ReadValue' OR Action = 'FilterMatchValue

It has the same target and scope as the first rule. It also permits access if the condition is true.

The condition will be true when any user (subject) attempts one of the search or read actions on
any directory entry (resource).

- 41 -



XACML tutorials

Create an XACML Access Control Domain
An XACMLAccessControl Domain is a specific area of a DIT that contains one or more XACML
policies. The entry at the top of the domain is termed the access control administrative point.

To create an XACMLAccessControl Domain below the Deltawing entry in the Deltawing
directory:

1. At the bottom of the left pane, clickServer View.
2. In the left pane, click your ViewDS server. The Status tab displays the status of your ViewDS

server.

3. Ensure that the ViewDSManagement Agent is connected to your ViewDS server, and that
your server is running.

4. At the bottom of the left pane, clickGlobal DIT View.
5. In the left pane, expand theDeltawing entry.
6. Right-click theDeltawing entry. A submenu is displayed.

7. From the submenu, clickAdd XACML Access Control Domain. The XACMLAC tab is
added to the right pane.

Create an XACML policy
To create the policy:

1. In the right pane, click theXACML AC tab and then thePolicy Versions tab.
2. In the right pane, click theVersion Management button followed byNew Policy Version.

The XACMLPolicy Version window is displayed.

3. Accept the default values by clickingSave. The new policy's version and status are displayed
next to the VersionManagement button.

NOTE: The policy ismarked as open, which indicates that it can bemodified. Once a
policy has been locked it cannot bemodified. You can, however, create a new policy
based on it.

- 42 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Define the first rule
To create the first rule in the policy:

1. In the right pane, click thePolicy Versions tab.
2. With 'ABAC Rules' and 'Access' selected in the filter boxes, click theNew button. The

XACMLRule window is displayed. It allows you to define a rule for the current policy.

3. In the Label box, enter Andrew Sherman meeting room access.

4. Enter a shortDescription of the rule, such as ABAC that permits Andrew Sherman

full access to meeting room entries. Note that the Target is set to Deltawing
and its Scope is subtree. Hence, the target is all subtrees and entries subordinate to
Deltawing. Also note that the Effect is set to the default, permit.

5. Click theEdit button. The XACMLExpression window is displayed (described below).

XACML Expression window

This window allows you to define the expressions that constitute a rule’s condition.

The window has two areas:

l Expression Tree
This is the window’smain work area and allows you to build expressions in a tree format.

l Text pane
This area shows the contents of the Expression Tree in a plain text format.

- 43 -



XACML tutorials

There are five sets of buttons:

l FunctionsDashboard
These buttons allow you to add one of the frequently used functions to the Expression Tree.
The functions are also available through the function buttons.

l Save and Exit button
This button allows you save the Expression Tree and exit the Expression Builder window.

l Attribute buttons
These buttons allow you to add XACML attributes to the Expression Tree. Only the XACML
attributes declared in the current AccessControl Domain are available. There is a button for
each category of XACML attribute: subject, resource, action, environment and other
attributes.

l Font Setting button
This button allows you to change the font for the attributes, values, functions and named
expressions displayed in the text pane.

l Named Expression button
This button allows you to add a named expressions to the Expression Tree. Only the named
expressions defined in the current AccessControl Domain are available.

l Function buttons
These buttons allow you to add a function to the Expression Tree. There are nine function
categories: Boolean, Relational, XPath, String, Arithmetic, Bag, Set, Date and Time, and
Conversion.

Define the first rule's condition
Each rule has a condition comprising a set of expressions. The condition for the rule in this
tutorial is as follows:

resource has attribute Business Category = ’Meeting Room’ AND
subject has attribute User Name = 'asherma' AND
(Action = 'ModifyEntry’ OR Action = 'AddType’ OR
Action = 'RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

Each line in the condition is an expression. The three expressions are combined by Boolean
'And' functions.

Start with a Boolean 'And'

To apply a Boolean 'And' function:

l In the XACMLExpression window, drag and drop the& from the FunctionsDashboard to the
node at the top of the expression tree. The function is displayed in the expression tree with two
empty nodes below it.

- 44 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Note: To replace a function, drag and drop another function on top of it.

Defining the first expression

You can now define the first expression in the condition:

1. Click theRelational Functions button. A list of functions is displayed.

2. Drag and drop equal onto the first empty node in the expression tree. The equal function is
added to the tree with two new empty nodes below it.

3. On the left of the window, click theResource Attributes button.

4. Drag and dropBusiness Category onto the fist not-set node below the equal function.

5. Double-click the not-set node below BusinessCategory. The XACMLValue (String)
window is displayed.

6. In theValue box, enter Meeting Room and then clickOK. The string is added to the
expression.

Now define the second expression in the condition.

- 45 -



XACML tutorials

Defining the second expression

To define the second expression in the condition:

1. From the FunctionsDashboard, drag and drop the = function onto the remaining not-set
node. The equal function is added to the tree with two new empty nodes below it.

2. Click theSubject Attributes button.

3. Drag and dropUser Name onto the fist node below the equal function.

4. Double-click the not-set node below User Name. The XACMLValue (String) window is
displayed.

5. Enter asherma and then clickOK. The string is added to the expression.

Now define the remaining expression.

Defining the third expression

To define the remaining expression:

1. Right-click the and function at the top of the Expression Tree, then clickAdd New
Argument. A new 'not-set' node is added to the bottom of the Expression Tree.

2. From the FunctionsDashboard, drag and drop the | function onto the new not-set node.
The 'or' function is displayed with two new 'not-set' nodes below it.

3. In the Expression Tree, right-click the or function, and then clickAdd New Argument. A
third 'not-set' node is displayed below the 'or' function.

4. Repeat step 3 until there is a total of five 'not-set' nodes below the or function in the
Expression Tree.

5. From the FunctionsDashboard, drag and drop the = function onto the first not-set node
below the 'or' function. The equal function is added to the tree with two new 'not-set' nodes
below it.

6. Click theActions button. The XACML attribute 'Action' is displayed.

- 46 -



ViewDS Access Sentinel: Installation and ReferenceGuide

7. Drag and dropAction onto the fist not-set node below the equal function.

8. Double-click the not-set node below 'Action'. The XACMLValue (Enumerated) window is
displayed.

9. ChooseModifyEntry from the dropdown list of values and clickOK.
10. Repeat steps 5 through 9 to add the following actions to the Expression Tree: AddType,

RemoveType, AddValue, RemoveValue.

Working with named expressions

A named expression is an expression that is saved and can then be reused in different rules. If
youmodify a named expression, the change will affect every rule it appears in.

These steps are not required to define the first rule, but are included in this tutorial to familiarize
you with named expressions:

1. In the Expression Tree, right-click the or function.
2. ClickSave as a Named Expression. A window is displayed.

3. Enter Update Actions and then clickOK.
4. Right-click the or function, then clickDelete. The node is deleted from the tree.

5. Right-click the and function at the top of the Expression Tree, then clickAdd New
Argument. A new 'not-set' node is added.

6. Click theNamed Expressions button. The named expression 'Update Actions' you just
created is displayed.

- 47 -



XACML tutorials

7. Drag and dropUpdate Actions onto the not-set node in the Expression Tree.

You can view the text version of the named expression by hovering your mouse over it.

8. Click theSave and Exit button. The XACMLExpression window closes and the condition is
displayed in the Condition box of the XACMLRule window.

9. ClickSave. The rule is added to the Rules area of the Policy Versions tab.
10. To view the named expression:

a. In the right pane, click thePolicy Versions tab.
b. In the first filter box, clickNamed Expressions. The named expressions are listed in the

summary area of the tab.

c. Click the named expression and then click theOpen button. The XACMLNamed
Expression window is displayed.

d. Click theEdit button. The named expression is displayed in the XACMLExpression
window.

Define the second rule
To create the second rule in the policy:

1. WithABAC Rules andAccess selected in the filter boxes, click theNew button. The
XACMLRule window is displayed.

2. In the Label box, enter Search & Read access control.

3. Enter a shortDescription of the rule, such as ABAC that permits all users

search and read access to all entries.

4. Click theEdit button.The XACMLExpression window is displayed.

Define the second rule's condition
The second permits all users to search and view directory entries. It is required because the
default behaviour within an AccessControl Domain is to deny access, unless explicitly permitted.

The second rule's condition is as follows:

Action = 'ReadEntry' OR Action = 'BrowseEntry' OR
Action = 'ReturnDN' OR Action = 'ReadType' OR
Action = 'FilterMatchType' OR Action = 'ReadValue' OR
Action = 'FilterMatchValue' OR Action = 'DiscloseEntryOnError’ OR
Action = 'DiscloseTypeOnError’ OR Action = 'DiscloseValueOnError’

- 48 -



ViewDS Access Sentinel: Installation and ReferenceGuide

To define these expressions:

1. From the FunctionsDashboard, drag and drop the | function onto the not-set node at the top
of the Expression Tree. The 'or' function is added to the Expression Tree with two empty
nodes below it.

2. In the Expression Tree, right-click the or function, then clickAdd New Argument. A 'not-
set' node is added to the tree.

3. Repeat the above step until there are ten 'not-set' nodes.

4. From the FunctionsDashboard, drag and drop the = function onto the first not-set node
below the or function. The 'equal' function is added to the tree with two new empty nodes
below it.

5. Click theAction Attributes button. The XACML attribute Action is displayed.
6. Drag and dropAction onto the fist not-set node below the 'equal' function.

7. Double-click the not-set node below Action. The XACMLValue (Enumerated) window is
displayed.

8. ChooseReadEntry from the dropdown list and clickOK.
9. Repeat steps 4 and 8 in order to add the following to the remaining not-set nodes:

l Action = BrowseEntry

l Action = ReturnDN

l Action = ReadType

l Action = ReadValue

l Action = FilterMatchValue

l Action = FilterMatchType

l Action = DiscloseEntryOnError

l Action = DiscloseTypeOnError

l Action = DiscloseValueOnError

10. Click theSave and Exit button, followed bySave.

Activate the policy
For a policy to take effect it must be activated. Only one version of a policy can be active at any
time. This ensures that after writing a new version of a policy, you can activate it at an
appropriate time and also have the option to roll back by activating the previous version if
necessary.

To activate the policy:

1. In thePolicy Versions tab, clickVersion Management followed byActivate. A warning is
displayed.

2. ClickYes. The policy's Status is now Active, Open. This signifies that the rule is in use
(active) but can still bemodified (open).

- 49 -



XACML tutorials

Test the policy
You can test the policy by attempting tomodify ameeting room entry through Access Presence,
first as Andrew Sherma and then as another user. (For the instructions to configure for Access
Presence, seeConfiguring for Access Presence in theViewDS Directory: Installation and
Operation Guide.)

To test the policy:

1. Open the URL: http://host:8090/directoryservices/viewds/webdua.cgi

2. Log on with the user name asherma and password testpass.

3. In the drop-down box, clickFunction Search and then clickAccess. The Advanced Search
page is displayed.

4. In the function box, enter meeting room and press the return key. A list of meeting rooms
is displayed.

5. Click the third meeting room in the list. The entry for the SalesMeeting Room is displayed.

6. ClickModify. TheModify page is displayed.
7. Modify the contents of theDescription box and then clickSave.
8. Log off by closing the browser session.

9. Repeat this task from step 1, logging on with the user name rturnbu and password
testpass. This user will not be able tomodify any entries.

- 50 -



ViewDS Access Sentinel: Installation and ReferenceGuide

ViewDS PEP tutorial: RBAC
This tutorial takes you through how to define an XACML policy that includes role-based access
control (RBAC). The policy will apply to an area of the Deltawing directory that is provided with
the ViewDS Directory.

It involves adding an RBAC rule to the XACMLAccessControl Domain that was defined during
the previous tutorial.

NOTE: Before starting this tutorial, you should have read Attribute versus role-based
access control and completed the Tutorial: Attribute-based access controls.

This tutorial has the following stages:

1. Requirements

2. Create a new XACML policy version

3. Define the role hierarchy

4. Define a role attribute

5. Define the RBAC rule

6. Activate the policy

7. Test the policy

8. Lock the policy

Requirements
This tutorial involves creating a new version of the XACML policy that was defined in the Tutorial:
Attribute-based access controls.

The requirements include an RBAC rule that permits the role of 'Executive Assistant' to modify
meeting room entries in the Deltawing directory.

The policy also requires a role hierarchy that defines that a 'Chief Executive Officer' inherits
permissions from an 'Executive Assistant'.

- 51 -



XACML tutorials

XACML attributes

An XACML attributemust be declared before it can be used in an XACML rule.

Each declaration includes a label that will appear in a rule, plus an XACML category, identifier,
and data type. An XACML attribute can also bemapped to a directory attribute.

This tutorial's rule will use XACML attributes declared in the Tutorial: Attribute-based access
controls (Action and BusinessCategory) plus an XACML attribute with the following definition:

Label XACML attribute category XACML attribute identifier XACML
data type

Directory
attribute

Role urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:2.0:
subject:subject:role

string title

The definitionmaps the XACML attribute to a directory attribute called title.

The value of title in a user's directory entry identifies their role. Thismeans that if a user's
title is 'Executive Assistant', for example, then their role is also 'Executive Assistant'.

Role hierarchy

A role hierarchy is required that includes the role 'Chief Executive Officer' which inherits
permissions from the role 'Executive Assistant'.

The ‘Executive Assistant’ role should also have an alternative name declared. The effect will be
that all users with the title 'Administrative Support' or 'Executive Assistant' will have the same
role and will be granted the same permissions.

RBAC rule

OneRBAC rule is required. Its target, scope, effect, role and condition are shown below.

RBAC Rule:
Target: Deltawing
Scope: subtree
Effect: Permit
Role: Executive Assistant

Condition:
resource has attribute Business Category = 'Meeting Room’ AND

- 52 -



ViewDS Access Sentinel: Installation and ReferenceGuide

(Action = 'ModifyEntry’ OR Action = 'AddType' OR
Action = 'RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

The rule’s target will be the entry at the root of the Deltawing directory; its scope will be the entire
subtree below the root entry; and its effect will be to permit access if the user's role is 'Executive
Assistant' and the condition is true.

The condition will be true when an 'Executive Assistant' attempts one of the actions on ameeting
room entry.

NOTE: A prerequisite of this tutorial is to have completed the Tutorial: Attribute-based
access controls. This is because it includes an ABAC rule that permits all users to search
and view all directory entries.

Create a new XACML policy version
To create a new version of the policy that was declared and then locked during the previous
tutorial:

1. In the left pane, click theDeltawing entry at the top of the DIT. The XACMLAC tab is
displayed in the right pane. This is because the entry is the administrative point for the
XACMLAccessControl Domain created in the previous tutorial.

2. In the right pane, click theXACML AC tab and then thePolicy Versions tab.
3. Click theVersion Management button followed byNew Policy Version. The XACML

Policy Version window is displayed.

4. Accept the default values by clickingSave. A new policy version with the status of open is
displayed next to the VersionManagement button.

Define the role hierarchy
Defining a role hierarchy involves two broad steps. First, declare the roles, and then declare the
hierarchical relationship between them.

The roles required for this tutorial are 'Chief Executive Officer' are 'Executive Assistant'.
However, you will also declare an alternative name of 'Administrative Support' for 'Executive
Assistant'. This will mean that the same role and permissionswill be granted to any user whose
title is 'Administrative Support' or 'Executive Assistant'.

- 53 -



XACML tutorials

To declare the 'Chief Executive Officer' role:

1. In the right pane, click theRoles tab.
2. At the bottom of the Roles tab, clickNew. The New XACMLRole window is displayed.

3. ClickAdd. The XACMLRole Namewindow is displayed.

4. Enter the role name Chief Executive Officer, then clickOK followed bySave. The
role is added to the Roles tab.

To declare the second role:

1. ClickNew. The New XACMLRole window is displayed.

2. ClickAdd. The XACMLRole Namewindow is displayed.

3. Enter the role name Executive Assistant, then clickOK.
4. Repeat steps 2 and 3 to add another name for the same role, Administrative

Support.

5. ClickSave. Two names for the single role are added to the Roles tab.
To declare that the 'Chief Executive Officer' should inherit permissions:

1. Right-clickChief Executive officer and then clickOpen. The XACMLRole window is
displayed.

2. Below theDirectly inherits permissions from box, clickEdit. The XACMLRole Selection
window is displayed.

3. Click either role name followed by the right-arrow button. Both role names aremoved to the
box on the right.

4. ClickOK followed bySave.

Declare a role attribute
To declare the XACML attribute for Role:

1. In the right pane, click theAttributes tab.
2. At the bottom of the right pane, clickNew. The XACMLAttribute window is displayed.

3. In the Label box, enter Role. This is the name that will appear in the rule.

- 54 -



ViewDS Access Sentinel: Installation and ReferenceGuide

4. In theCategory box, clickurn:oasis:names:tc:xacml:1.0:subject-category:access-
subject.

5. In the Identifier box, clickurn:oasis:names:tc:xacml:2.0:subject:role.
6. In theDirectory Attribute box, click title.
7. ClickSave. The Attributes tab displays the new attribute.

Also see XACML attributes provided by the ViewDS PEP.

NOTE: Every attribute in an XACML domainmust have a unique combination of
Category, Identifier and Data Type.

Define the RBAC rule
The required RBAC rule is as follows:

RBAC Rule:
Target: Deltawing
Scope: subtree
Effect: Permit
Role: Executive Assistant

Condition:
resource has attribute Business Category = 'Meeting Room’ AND
(Action = 'ModifyEntry’ OR Action = 'AddType' OR
Action = 'RemoveType’ OR Action = 'AddValue’ OR Action = 'RemoveValue’)

To create an RBAC rule:

1. In the right pane, click thePolicy Versions tab.
2. WithRBAC Rules andAccess selected in the filter boxes, click theNew button. The

XACMLRule window is displayed.

3. In the Label box, enter Exec Assistant & Admin Support meeting room

access.

4. Enter a shortDescription of the rule, such as RBAC rule that permits Exec

Assistant & Admin Support full access to meeting room entries.
Note that the Target is Deltawing and its Scope is subtree. Hence, the target is all subtrees
and entries subordinate to Deltawing. Also note that the Effect is set to the default, permit.

To define the role to which the rule applies:

1. Click theEdit button next to theRole Expression box, The XACMLRole Expression
window is displayed. The names of the roles you declared earlier are listed on the left.

- 55 -



XACML tutorials

2. ClickExecutive Assistant followed by the right arrow. The role name ismoved to the box
on the right.

3. ClickOK. The role is added to the Role Expression box. Note that this name applies to a
single role, which also has the name 'Administrative Support' assigned to it.

The remaining expressions are defined through the XACMLExpression window:

1. Click theEdit button next to theCondition box. The XACMLExpression window is
displayed.

2. Drag and drop the& from the FunctionsDashboard to the node at the top of the expression
tree. The function is displayed in the expression tree with two empty nodes below it.

Note: To replace a function, drag and drop another function on top of it.

3. Drag and drop the = from the FunctionsDashboard onto the first not-set node in the
expression tree.

4. On the left of the window, click theResource Attributes button.

5. Drag and dropBusiness Category onto the fist not-set node below the equal function.

6. Double-click the not-set node below BusinessCategory. The XACMLValue (String)
window is displayed.

7. In theValue box, enter Meeting Room and then clickOK. The string is added to the
expression.

- 56 -



ViewDS Access Sentinel: Installation and ReferenceGuide

8. Click theNamed Expressions button. The named expression 'Update Actions' that was
created during the previous tutorial is displayed.

9. Drag and dropUpdate Actions onto the not-set node in the Expression Tree.

You can view the text version of the named expression by hovering your mouse over it.

10. Click theSave and Exit button. The XACMLExpression window closes and the condition is
displayed in the Condition box of the XACMLRule window.

11. ClickSave. The rule is added to the Rules area of the Policy Versions tab.

Activate the policy
For a policy to take effect it must be activated. Only one version of a policy can be active at any
time. This ensures that after writing a new version of a policy, you can activate it at an
appropriate time and also have the option to roll back by activating the previous version if
necessary.

To activate the policy:

1. In thePolicy Versions tab, clickVersion Management followed byActivate. A warning is
displayed.

2. ClickYes. The policy's Status is now Active, Open. This signifies that the rule is in use
(active) but can still bemodified (open).

Test the policy
You can test the policy by attempting tomodify ameeting room entry through Access Presence.
(For the instructions to configure for Access Presence, seeConfiguring for Access Presence in
theViewDS Directory: Installation andOperation Guide.)

Testing involves logging onto Access Presence as the following users:

Deltawing user Role (title) Username Password

Maria Guglielmino Administrative Support mguglie testpass

Robert Turnbull Executive Assistant rturnbu testpass

Margaret Hunter Chief Executive Officer mhunter testpass

Karen Johannesen Director kjohann testpass

All the above users, except Karen Johannesen, will be able tomodify ameeting room entry. Note
that Margaret Hunter has the role 'Chief Executive Officer', which inherits permissions through
the role hierarchy.

- 57 -



XACML tutorials

To test the policy:

1. Open the URL: http://host:8090/directoryservices/viewds/webdua.cgi

2. Enter a username and password testpass.

3. In the drop-down box, clickFunction Search and then clickAccess. The Advanced Search
page is displayed.

4. In the function box, enter meeting room and press the return key. A list of meeting rooms
is displayed.

5. Click ameeting room entry. The entry's details are displayed. If the user has permission to
modify the entry, then theModify button is displayed.

6. Log off by closing the browser session.

7. Repeat this task for users with different roles.

Lock the policy
Once you lock a policy you cannot delete or modify it. You can, however, create a new policy
based on an existing policy by clicking theNew button in the Policy Versions tab.

To lock the policy:

1. In thePolicy Versions tab, clickVersion Management followed byLock. A warning is
displayed.

2. ClickOK. The policy’s Status is now Active, Locked.

- 58 -



ViewDS Access Sentinel: Installation and ReferenceGuide

HTTP PEP tutorial
This tutorial takes you through how to apply an XACML policy, which includes attribute-based
access control (ABAC), to web pages hosted by either an Apache or IIS web server.

The tutorial includes the following stages:

1. Requirements

2. Set the policy base object

3. Create tutorial files and configure the web server

4. Create an XACMLAccessControl Domain

5. Create an XACML policy

6. Declare XACML attributes

7. Define the first rule

8. Define the second rule

9. Define the third rule

10. Activate the policy

11. Test the policy

12. Lock the policy

Requirements
A policy is required to control user access to a set of web pageswith HTTP authentication and
hosted by an Apache or IIS server.

The set of web pages is as follows:
/xacml/index.html

/xacml/restricted/index.html

/xacml/restricted/restricted.html

/xacml/secret/index.html

/xacml/secret/secret.html

HTTP authentication is also required for users with the following usernames: ‘mhunter’,
‘asherma’ and ‘rturnbu’. All should have the same password: ‘testpass’.

The policy will control access as follows:

1. Permit all users access to all index.html files

2. Permit only 'mhunter’ and 'asherma’ access to restricted.html

3. Permit only 'mhunter’ access to secret.html

The last requirement is illustrated below.

- 59 -



XACML tutorials

When a user (subject) attempts to access a webpage (resource), the Apache Policy
Enforcement Point (PEP) will send an authorization decision request to the Policy Decision Point
(PDP). The request includes values that identify, among other things, the subject, the resource
and the attempted action. These values are held in XACML attributes.

XACML attributes

Before an XACML attribute can be used by the PAP, it must first be declared in the XACML
AccessControl Domain.

Each declaration has a ‘Label’ that will appear in a rule’s condition, and a XACML category,
identifier and type. The combination of category, identifier and type dictates the value returned by
the PEP and assigned to the XACML attribute.

The XACML attribute declarations required in this tutorial are as follows.

Label XACML attribute category XACML attribute identifier XACML data
type

User
Name

urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:
subject:subject-id

string

URL
Path

urn:oasis:names:tc:xacml:3.0:attribute-
category:resource

http://viewds.com/http/
resource/path

string

NOTE: An XACML attribute's category corresponds to its purpose, as shown in the
previous illustration.

Rules

Each rule has a target, scope, effect and condition. The effect of all three rules in this tutorial will
be to permit access, and their targets will be either paths or webpages. The target and scope are
arbitrary as they only apply to the internal PEP.

The effect (permit) and condition for each rule in this tutorial are shown below.

Rule 1:
Permit (if the following condition is true)
URL Path contains 'index.html'
Rule 2:
Permit (if the following condition is true)
URL Path contains 'restricted.html' AND
(User Name = 'asherma’ OR User Name = 'mhunter')

- 60 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Rule 3:
Permit (if the following condition is true)
URL Path contains 'secret.html' AND
User Name = 'mhunter'

Set the policy base object
The policy base object is the root of the directory subtree where the PDP searches for XACML
policy. In this tutorial, the policy base object is the Deltawing entry:

1. In the ViewDSManagement Agent, clickServer View.
2. In the left pane, click the appropriate DSA.

3. In the right pane, click theXACML Config tab.
4. ClickBrowse next to thePolicy Base Object box. The DIT Browser is displayed.
5. Click theDeltawing entry (the first entry below theRoot) and then clickOK.
6. At the bottom of theXACML Config tab, clickSet XACML Configuration.

Create tutorial files and configure the web server
Next, copy the files and set up your web server for this tutorial:

1. Create the following directories and files in the appropriate location for your web server (for
example, below the htdocs directory for Apache, or below wwwroot for IIS):
/xacml/index.html

/xacml/restricted/index.html

/xacml/restricted/restricted.html

/xacml/secret/index.html

2. Configure your web server for HTTP authentication on the above files. Apply HTTP
authentication for users with the following usernames: ‘mhunter’, ‘asherma’ and ‘rturnbu’. All
should have the same password: ‘testpass’. For information about configuring a web server
for a PEP, see either Deploying the Apache PEP or Deploying the IIS PEP.

Create an XACML Access Control Domain
An XACMLAccessControl Domain is an area of a DIT containing XACML policy. The entry at
the top of the domain is the access control administrative point.

To create an XACMLAccessControl Domain:

1. At the bottom of the left pane, clickServer View.
2. In the left pane, click your ViewDS server. The Status tab displays the status of your ViewDS

server.

3. Ensure that the ViewDSManagement Agent is connected to your ViewDS server, and that
your server is running.

4. At the bottom of the left pane, clickGlobal DIT View.

- 61 -



XACML tutorials

5. In the left pane, expand theDeltawing entry.
6. Right-click theDeltawing entry. A submenu is displayed.

7. From the submenu, clickAdd XACML Access Control Domain. The XACMLAC tab is
added to the right pane.

Create an XACML policy
To create the policy:

1. In the right pane, click theXACML AC tab and then thePolicy Versions tab.
2. In the right pane, click theVersion Management button followed byNew Policy Version.

The XACMLPolicy Version window is displayed.

3. Accept the default values by clickingSave. The new policy's version and status are displayed
next to the VersionManagement button.

NOTE: The policy ismarked as open, which indicates that it can bemodified. Once a
policy has been locked it cannot bemodified. You can, however, create a new policy
based on it.

Declare XACML attributes
To declare the XACML attributes for the tutorial's policy:

1. In the right pane, Click theAttributes tab.
2. At the bottom of the right pane, clickNew. The XACMLAttribute window is displayed.

3. In the Label box, enter URL Path. This is the name that will appear in the rule.

4. In theCategory box, clickurn:oasis:names:tc:xacml:3.0:attribute-category:resource.
The Identifier box defaults to urn:oasis:names:tc:xacml:1.0:
microprocessor-id, and the Data Type defaults to string.

5. In the Identifier box, delete the default value and enter the following:
http://viewds.com/http/resource/path

6. ClickSave. The XACML attribute is added to the Attributes tab.
7. Repeat the above steps to declare the following XACML attribute:

Label Category Identifier Data Type

User Name urn:oasis:names:tc:xacml:1.0:subject-
category:access-subject

urn:oasis:names:tc:xacml:1.0:
subject:subject-id

string

- 62 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Note that the above information is also in XACML attributes provided by an HTTP PEP.

NOTE: Every attribute in an XACML domainmust have a unique combination of
Category, Identifier and Data Type.

Define the first rule
To define the first rule:

1. In the right pane, click thePolicy Versions tab.
2. WithABAC Rules andAccess selected in the filter boxes, click theNew icon. TheXACML

Rulewindow is displayed. It allows you to define a rule for the current policy.

3. In the Label box, enter Access to index.html.

4. Optionally, enter a longerDescription of the rule.
5. Click theEdit button. The XACMLExpression window is displayed.

Defining the condition

Each rule has a condition comprising one or more expressions declared in an expression tree.

The condition for the first rule in this tutorial has the following expression:

URLPath contains ‘index.html’

Every expression has a function and XACML attributes. The function is contains and the XACML
attribute is Resource Path, and is represented in the expression tree as follows:

To define the first rule's condition:

1. Click theString Functions button. A list of functions is displayed.

2. Drag and drop the contains function onto the not-set node in the expression tree. The
contains function is added to the tree with two not-set nodes below it.

3. Double-click the first not-set node. The String Editor window is displayed.

- 63 -



XACML tutorials

4. In the Value box, enter index.html and clickOK.

5. Click theResource Attributes button.

6. Drag and dropURL Path onto the remaining not-set node.
7. ClickSave and Exit. The XACMLExpression window closes and the XACMLRule window

is displayed.

8. ClickSave. The rule is displayed in the Policy Versions tab.

Define the second rule
The second rule’s condition is as follows:

URL Path contains 'restricted.html' AND
(User Name = 'asherma' OR User Name = 'mhunter')

The first expression is very similar to the first rule. The second is slightlymore complex, and for
the sake of an example you will define it as a named expression.

A named expression is an expression that is saved and can then be reused in different rules. If
youmodify a named expression, then the change will affect every rule it appears in.

The first expression and the named expression will be tied together by a Boolean 'and' function
to form the second rule.

To define the named expression

1. In the first filter box in thePolicy Versions tab, clickNamed Expressions. The named
expressions are listed in the summary area of the tab.

2. Click theNew icon. The XACMLNamed Expression window is displayed.

- 64 -



ViewDS Access Sentinel: Installation and ReferenceGuide

3. In theName box, enter ashermaOR mhunter.

4. Click theEdit button. The XACMLExpression window is displayed.

5. Drag and drop the | function from the FunctionsDashboard onto the not-set node at the top
of the Expression Tree. The function is added to the expression tree with two empty nodes
below it.

6. Drag and drop the = function from the FunctionsDashboard onto the first not-set node. The
function is added to the expression tree with two empty nodes below it.

7. Click theSubject Attributes button, then drag and dropUser Name onto the first not-set
node below the = equal function.

8. Double-click the not-set node below User Name. The String Editor window is displayed.

9. In the Value box, enter asherma and clickOK.

10. Repeat steps 7 through 10 above so that the Expression Tree is as follows:

11. Click theSave and Exit button.
12. ClickSave.

- 65 -



XACML tutorials

To define the second rule

1. WithABAC Rules andAccess selected in the filter boxes, click theNew icon. The XACML
Rule window is displayed.

2. In the Label box, enter Access to restricted.html.

3. Click theEdit button. The XACMLExpression window is displayed.

4. Drag and drop the& function from the FunctionsDashboard onto the not-set node at the
top of the Expression Tree. The function is added to the expression tree with two empty
nodes below it.

5. Click theString Functions button. A list of functions is displayed.

6. Drag and drop the contains function onto the first not-set node in the expression tree. The
function is added to the tree with two not-set nodes below it.

7. Double-click the first not-set node. The XACMLValue (String) window is displayed.

8. In theValue box, enter restricted.html and clickOK.

9. Click theResource Attributes button.

10. Drag and dropURL Path onto the not-set node below restricted.html.

11. Click theNamed Expressions button.

- 66 -



ViewDS Access Sentinel: Installation and ReferenceGuide

12. Drag and drop asherma OR mhunter onto the remaining not-set node.

13. Click theSave and Exit button.
14. Click theSave button.

Define the third rule
The third rule’s condition is as follows:

URL Path contains 'secret.html' AND
User Name = 'mhunter'

It is defined in the expression tree as follows:

To define the rule:

1. WithABAC Rules andAccess selected in the filter boxes, click theNewbutton. The
XACMLRule window is displayed.

2. In the Label box, enter Access to secret.html.

3. Click theEdit button. The XACMLExpression window is displayed.

4. Drag and drop the& function from the FunctionsDashboard onto the not-set node at the
top of the Expression Tree. The function is added to the expression tree with two empty
nodes below it.

5. Click theString Functions button.
6. Drag and drop the contains function onto the first not-set node in the expression tree. The

function is added to the tree with two not-set nodes below it.

- 67 -



XACML tutorials

7. Double-click the first not-set node. The String Editor window is displayed.

8. In theValue box, enter secret.html and clickOK.
9. Click theResource Attributes button.
10. Drag and dropURL Path onto the not-set node below secret.html.

11. Drag and drop the = function from the FunctionsDashboard onto the remaining not-set
node. The function is added to the expression tree with two empty nodes below it.

12. Click theSubject Attributes button, then click and dragUser Name onto the first not-set
node below the = equal function.

13. Double-click the not-set node below User Name. The String Editor window is displayed.

14. In theValue box, enter mhunter and clickOK.

15. Click theSave and Exit button.
16. ClickSave.

Activate the policy
For a policy to take effect it must be activated. Only one version of a policy can be active at any
time. This ensures that after writing a new version of a policy, you can activate it at an
appropriate time and also have the option to roll back by activating the previous version if
necessary.

To activate the policy:

1. In thePolicy Versions tab, clickVersion Management followed byActivate. A warning is
displayed.

2. ClickYes. The policy's Status is now Active, Open. This signifies that the rule is in use
(active) but can still bemodified (open).

- 68 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Test the policy
You can test the policy by attempting to access different pages and logging on as different users
when prompted.

For example, you should be able to access:

l http://server/xacml/index.html

with the user name 'rturnbu’

l http://server/xacml/restricted/restricted.html

with the user name 'asherma’

l http://server/xacml/secret/secret.html

with the user name 'mhunter’

But you should be unable to access:

l http://server/xacml/secret/secret.html

with the user name 'asherma’

l http://server/xacml/secret/secret.html

with the user name 'rturnbu’

l http://server/xacml/restricted/restricted.html

with the user name 'rturnbu’

Lock the policy
Once you lock a policy you cannot delete or modify it. You can, however, create a new policy
based on an existing policy by clicking theNew button in the Policy Versions tab.

To lock the policy:

1. In thePolicy Versions tab, clickVersion Management followed byLock. A warning is
displayed.

2. ClickOK. The policy’s Status is now Active, Locked.

- 69 -





ViewDS Access Sentinel: Installation and ReferenceGuide

XACML attributes

provided by a PEP

This appendix describes the attributes provided by each Policy Enforcement Point (PEP):

l XACML attributes provided by an HTTP PEP

l XACML attributes provided by the ViewDS PEP

XACML attributes provided by an HTTP PEP
The attributes are included in an authorization decision request if the corresponding information
is available in the HTTP server request context. They can be declared and included in an
XACML policy.

They are in the following XACML attribute categories:

l Access-subject category

l Action category

l Environment category

l Resource category

l Requesting-machine category

Access-subject category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

The PEP includes the following values in an authorization decision request to identify the subject
(the user attempting to access a site, page or application).

Value XACML attribute identifier XACML data type

HTTP authenticated user identifier urn:oasis:names:tc:xacml: 1.0:subject:subject-id string

HTTP authentication mechanism http://viewds.com/http/subject/auth-type string

HTTP server time (with timezone) urn:oasis:names:tc:xacml: 1.0:subject:request-time dateTime

HTTP browser host name http://viewds.com/http/resource/hostname string

HTTP browser IP address http://viewds.com/http/subject/address string

- 71 -



XACML attributes provided by a PEP

Action category
This attribute is in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:action

There is one attribute that identifies the action being attempted by a subject on a resource.

Value XACML attribute identifier XACML data type

HTTP request method urn:oasis:names:tc:xacml:1.0:action:
action-id

string

Environment category
These attributes are in the XACML category:
http://viewds.com/http/environment/redirect-uri

Value XACML attribute identifier XACML data type

Redirection page's query string http://viewds.com/http/environment/ redirect-query string

Redirection page's URL http://viewds.com/http/environment/ redirect-uri anyURI

Resource category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:resource

The PEP includes the following values in an authorization decision request to identify the
resource (the site, page or application that the subject is attempting to access).

Value XACML attribute identifier XACML data type

URL host name http://viewds.com/http/resource/hostname string

URL urn:oasis:names:tc:xacml:1.0:resource: resource-id anyURI

File/resource referenced by URL urn:oasis:names:tc:xacml:1.0:resource: resource-id string

URL scheme http://viewds.com/http/resource/scheme integer

URL port number http://viewds.com/http/resource/port string

URL path information http://viewds.com/http/resource/path string

URL query string http://viewds.com/http/resource/query string

URL fragment http://viewds.com/http/resource/fragment string

Requesting-machine category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:requesting-machine

Value XACML attribute identifier XACML data type

HTTP server host name http://viewds.com/http/subject/hostname string

HTTP server IP address http://viewds.com/http/subject/address string

- 72 -



ViewDS Access Sentinel: Installation and ReferenceGuide

XACML attributes provided by the ViewDS PEP
This topic describes the XACML attributes that the ViewDS Policy Enforcement Point (PEP)
includes in an authorization decision request.

These attributes can be declared in an XACMLAccessControl Domain and then used within a
policy to identify the subject, resource and action, for example.

The ViewDS PEP generates authorization decision requests that include the following XACML
attribute categories:

l Action category

l Access-subject category

l Resource category

Action category
The attribute is in the XACML category:
urn:oasis:names:tc:xacml:3.0:attribute-category:action

The attribute identifies the action being attempted by a subject (directory user) on a resource. A
resource can be one of the following:

l directory entry

l attribute type

l attribute value

Directory entry

Possible values XACML attribute identifier XACML data type

ReadEntry
BrowseEntry
AddEntry
RemoveEntry
ModifyEntry
RenameEntry
ExportEntry
ImportEntry
ReturnDN
DiscloseEntryOnError
AssertTrust

urn:oasis:names:tc: xacml:1.0: action:action-id string

Attribute type

Possible values XACML attribute identifier XACML data type

ReadEntry
CompareType
AddType
RemoveType
FilterMatchType
DiscloseTypeOnError

urn:oasis:names:tc: xacml:1.0: action:action-id string

- 73 -



XACML attributes provided by a PEP

Attribute value

Possible values XACML attribute identifier XACML data type

ReadValue
CompareValue
AddValue
RemoveValue
FilterMatchValue
DiscloseTypeOnError

urn:oasis:names:tc: xacml:1.0: action:action-id string

Access-subject category
These attributes are in the XACML category:
urn:oasis:names:tc:xacml:1.0:subject-category:access-subject

The PEP includes the following values in an authorization decision request.

Value XACML attribute
identifier

XACML
data type

The authenticated user’s Directory Name (DN), which the PEP
obtains from the user’s authentication information.

urn:oasis:names:tc:xacml:
1.0:subject:subject-id

X500Name

The viewDSUserName attribute in the subject’s directory entry. string

The attribute identified by the RFC822 Name Attribute (see the
XACML Config tab in the ViewDS Management Agent).

rfc822Name

Resource category
These attributes are in the XACML category:

urn:oasis:names:tc:xacml:3.0:attribute-category:resource

The PEP includes the following value in an authorization decision request.

Value XACML attribute identifier XACMLdata
type

The Directory Name (DN) of the
resource.

urn:oasis:names:tc:xacml: 1.0:resource:resource-
id

X500Name

- 74 -



ViewDS Access Sentinel: Installation and ReferenceGuide

Operational attributes

This appendix describes the following operational attributes associated with Access Sentinel:

l viewDSXACMLSubtreePolicy

l viewDSXACMLEntryPolicy

l viewDSXACMLAttributePresentation

l viewDSXACMLPolicyVersion

l viewDSXACMLNamedExpression

l viewDSXACMLActivePolicy

l viewDSXACMLConfiguration

For information about manipulating operational attributes using the ViewDS StreamDUA tool,
see theViewDS Directory Server: Technical ReferenceGuide.

viewDSXACMLSubtreePolicy

viewDSXACMLSubtreePolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicy

EQUALITY MATCHING RULE viewDSXACMLPolicyMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLSubtreePolicy

}

The attribute is stored in an object class, which is a sub-entry located below the administrative
point.

viewDSXACMLSubtreePolicySubentry OBJECT-CLASS ::= {

KIND auxiliary

MUST CONTAIN { viewDSXACMLSubtreePolicy }

ID id-viewds-sc-XACMLSubtreePolicySubentry

}

The viewDSXACMLSubtreePolicy attribute is automatically indexed for the
viewDSXACMLPolicyMatchmatching rule.

- 75 -



Operational attributes

viewDSXACMLEntryPolicy
This operational attribute stores an XACML policy that applies to an AccessControl Domain
whose administrative point is a single entry.

viewDSXACMLEntryPolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicy

EQUALITY MATCHING RULE viewDSXACMLPolicyMatch

SINGLE VALUE TRUE

USAGE directoryOperation

ID id-viewds-aca-XACMLSubtreePolicy

}

The attribute is stored in an object class, which is a subentry located below the administrative
point.

viewDSXACMLEntryPolicySubentry OBJECT-CLASS ::= {

KIND auxiliary

MUST CONTAIN { viewDSXACMLEntryPolicy }

ID id-viewds-sc-XACMLEntryPolicySubentry

}

The viewDSXACMLEntryPolicy attribute is automatically indexed for the
viewDSXACMLPolicyMatchmatching rule.

viewDSXACMLAttributePresentation
This operational attribute describes amapping between a display name in the PAP interface and
an XACML triplet. The XACML triplet comprises a category identifier, an attribute identifier and a
data-type identifier. (A directory attribute type can also be associated with the triplet.)

viewDSXACMLAttributePresentation ATTRIBUTE ::= {

WITH SYNTAX  XACMLAttributePresentation

EQUALITY MATCHING RULE  viewDSXACMLAttributePresentationMatch

USAGE  directoryOperation

ID  id-viewds-aca-XACMLAttributePresentation

}

XACMLAttributePresentation ::= SEQUENCE {

displayName     [0] UnboundedDirectoryString,

category  [1] AnyURI,

attribute       [2] XACMLAttributeIdentifier,

dataType  [3] AnyURI,

type  [4] AttributeType OPTIONAL,

normalized      [5] BOOLEAN DEFAULT TRUE

mustBePresent   [6] BOOLEAN DEFAULT FALSE,

- 76 -



ViewDS Access Sentinel: Installation and ReferenceGuide

issuerAttribute [7] BOOLEAN DEFAULT FALSE

obsolete  [8] BOOLEAN DEFAULT FALSE

permittedValues [9] SEQUENCE OF UnboundedDirectoryString OPTIONAL

}

XACMLAttributeIdentifier ::= CHOICE {

identifier  [0] AnyURI

-- or an XPath expression in future

}

viewDSXACMLAttributePresentationMatch MATCHING-RULE ::= {

SYNTAX  XACMLAttributeAssertion

ID  id-viewds-mr-XACMLAttributePresentationMatch

}

XACMLAttributeAssertion ::= SEQUENCE {

category  [0] AnyURI,

attribute [1] XACMLAttributeIdentifier,

dataType  [2] AnyURI

}

The normalized field specifies whether the PAP interface should apply stringprep normalization
to the values of this attribute appearing in the conditions of rules. The issuerAttribute field
indicateswhether values of an attribute can be used to identify a policy’s issuer. The
permittedValues field contains a list of permitted values for an XACML attribute.

viewDSXACMLPolicyVersion
This operational attribute identifies the version and current state of an XACML policy. When a
PAP user creates a new version of a policy, viewDSXACMLPolicyVersion is added to the
access control administrative point.

viewDSXACMLPolicyVersion ATTRIBUTE ::= {

WITH SYNTAX XACMLPolicyVersion

EQUALITY MATCHING RULE viewDSXACMLPolicyVersionMatch

USAGE directoryOperation

ID id-viewds-aca-XACMLPolicyVersion

}

XACMLPolicyVersion ::= SEQUENCE {

Identifier [0] XACMLVersion,

issuer     [1] XACMLIssuer OPTIONAL,

locked     [2] BOOLEAN DEFAULT FALSE,

base       [3] XACMLVersion OPTIONAL

}

viewDSXACMLPolicyVersionMatch MATCHING-RULE ::= {

SYNTAX XACMLPolicyVersionAssertion,

ID id-viewds-mr-XACMLPolicyVersionMatch

- 77 -



Operational attributes

}

XACMLPolicyVersionAssertion ::= SEQUENCE {

identifier [0] XACMLVersion,

issuer     [1] XACMLIssuer OPTIONAL

}

The version field contains a single value to identify the version number of the policy. Version
numbers starting with zero (0.1, 0.2, etc) are reserved for old policies that need to be archived
andmanaged outside the PAP interface. The viewDSXACMLPolicy VersionMatchmatching
rule uses an integer match on the version field, and requires it to correspond to the assertion
value exactly.

The base field identifies the version fromwhich the current policy was created. If the field is
undeclared, this indicates that the current policy is not based on an existing version.

The locked field indicateswhether the version of policy should bemade available for editing by
the PAP user. The values of the viewDSXACMLPolicyVersion attribute are never modified or
deleted when the locked field is true.

The viewDSXACMLPolicyVersionMatch will match if the issuer is not present in either value or is
present in both.

viewDSXACMLNamedExpression
This operational attribute holds one or more named expressions that can be used by the PAP
user when constructing conditions in an XACML rule.

viewDSXACMLNamedExpression ATTRIBUTE ::= {

WITH SYNTAX  XACMLNamedExpression

EQUALITY MATCHING RULE  viewDSXACMLNamedExpressionMatch

SINGLE VALUE  TRUE

USAGE  directoryOperation

ID  id-viewds-aca-XACMLNamedExpression

}

XACMLNamedExpression ::= SEQUENCE {

identifier       [0] UTF8String,

version  [1] XACMLVersion,

issuer  [1] XACMLIssuer OPTIONAL,

descriptiveName  [2] UTF8String,

description  [3] UTF8String OPTIONAL,

definition  [4] [RXER:TYPE-REF {

namespace-name "http://viewds.com/SchemaGlue",

local-name "XACMLExpressionContainer" }] Markup

}

XACMLIssuer ::= [RXER:TYPE-REF {

namespace-name “http://viewds.com/SchemaGlue”,

- 78 -

http://viewds.com/SchemaGlue
http://viewds.com/SchemaGlue


ViewDS Access Sentinel: Installation and ReferenceGuide

local-name “XACMLPolicyIssuerContainer” }] Markup

}

viewDSXACMLNamedExpressionMatch MATCHING-RULE ::= {

SYNTAX  UTF8String

id-viewds-mr-XACMLNamedExpressionMatch

}

viewDSXACMLEmbeddedExpressionMatch MATCHING-RULE ::= {

SYNTAX  UTF8String

id-viewds-mr-XACMLEmbeddedExpressionMatch

}

viewDSXACMLActivePolicy
This operational attribute identifies the active version of a specific policy created by a specific
issuer. (The combination of version number and issuer uniquely identifies each policy.) If the
issuer is unspecified then the attribute identifies the active version of the trusted policy.

viewDSXACMLActivePolicy ATTRIBUTE ::= {

WITH SYNTAX XACMLActivePolicy

EQUALITY MATCHING RULE  viewDSXACMLActivePolicyMatch

USAGE directoryOperation

ID id-viewds-aca-XACMLActivePolicy

}

XACMLActivePolicy ::= SEQUENCE {

version [0] XACMLVersion,

issuer  [1] XACMLIssuer OPTIONAL

}

viewDSXACMLActivePolicyMatch MATCHING-RULE ::= {

SYNTAX XACMLActivePolicyAssertion

id-viewds-mr-XACMLActivePolicyMatch

}

XACMLActivePolicyAssertion ::= SEQUENCE {

issuer [0] XACMLIssuer OPTIONAL

}

- 79 -



Operational attributes

viewDSXACMLConfiguration
This operational attribute configures various aspects of the Policy Decision Point (PDP) and is
stored in the directory’s root entry. The attribute takes a single value with the syntax described by
this ASN.1 type definition:

XACMLConfiguration ::= SEQUENCE {

combining-algorithm  [0] AnyURI DEFAULT

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides",

default-version      [1] UTF8String (PATTERN "(\d+\.)*\d+") OPTIONAL,

rfc822Name-attribute [2] AttributeType OPTIONAL,

user-base-object     [3] DistinguishedName OPTIONAL,

user-attributes      [4] SET OF AttributeType OPTIONAL,

policy-base-object   [5] DistinguishedName OPTIONAL,

allowed-origins [6] SEQUENCE OF UTF8STRING OPTIONAL

}

viewDSXACMLConfiguration ATTRIBUTE ::=

WITH SYNTAX XACMLConfiguration

SINGLE VALUE TRUE

USAGE dSAOperation

ID id-viewds-aca-XACMLConfiguration

}

The attribute's fields are described below.

combining-algorithm
When the Policy Decision Point (PDP) evaluates an authorization decision request, it finds the
applicable XACML policy sets and combines them according to the combining algorithm. This
only applies to the policy sets declared in the viewDSXACMLPolicySet attribute. The values of
viewDSXACMLPolicy and viewDSSecondaryXACMLPolicySet are only included if referenced
by a policy defined in viewDSXACMLPolicySet. If the combining-algorithm field is absent, then
the default deny overrides is applied. Plausible values are:

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-overrides"

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-overrides"

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:deny-unless-permit"

"urn:oasis:names:tc:xacml:3.0:policy-combining-algorithm:permit-unless-deny"

For further information see the XACML 3.0 specification.

default-version
XACML policies and policy sets can be versioned. By default, when there aremultiple policies or
policy sets with the same identifier, the Policy Decision Point (PDP) uses the one with the

- 80 -



ViewDS Access Sentinel: Installation and ReferenceGuide

highest version number. Alternatively, if the default-version field is defined, the Policy Decision
Point (PDP) uses the policy or policy set with the highest version number that is less than or
equal to the field’s value.

rfc822Name-attribute
If subject attributes are not provided in an authorization decision request, the Policy Decision
Point (PDP) will attempt to look them up in the Policy Information Point (the ViewDS directory).
For this to occur the request must include the following XACML attribute:

urn:oasis:names:tc:xacml:1.0:subject:subject-id

If the data type of the subject-id is a:

l String – the Policy Decision Point looks for a directory entry whose viewDSUserName
attribute equals the string value specified by subject-id.

l x500Name – the Policy Decision Point looks for a directory entry whose LDAP Distinguished
Name equals the specified X500 name specified by subject-id.

l rfc822Name – the Policy Decision Point looks for a directory entry that has a value of the
attribute type identified by the rfc822Name-attribute that is equal to the value specified by
subject-id.

user-base-object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in order to
find a user entry. (The directory acts as a Policy Information Point by storing information that can
influence in an access decision.)

user-attributes
These are user attributes that the Policy Decision Point (PDP) will need to accesswhen
evaluating authorization requests.

policy-base-object
The root of the subtree in the directory that the Policy Decision Point (PDP) will search in order to
find a policy or policy set.

allowed-origins
Defines a cross-origin resource sharing (CORS) policy that specifies fromwhich origins the
Policy Decision Point (PDP) will accept requests.

The field is a SEQUENCEOFUTF8String where each string is a regular expression conforming
to XMLSchema (see https://www.w3.org/TR/xmlschema-2/#regexs).

- 81 -

https://www.w3.org/TR/xmlschema-2/#regexs


Operational attributes

Example
Here is an example of a StreamDUA operation to add a value of the
viewDSXACMLConfiguration attribute:

modify {}

with changes { 

add attribute viewDSXACMLConfiguration {

  combining-algorithm "urn:oasis:names:tc:xacml:3.0:" +

  "policy-combining-algorithm:deny-unless-permit",

  default-version "3.1",

  rfc822Name-attribute { 0 9 2342 19200300 100 1 3

}

}

};

- 82 -


	About this guide
	Who should read this guide
	Related documents
	How this guide is organized

	About ViewDS Access Sentinel
	What is Access Sentinel?
	Why use XACML access controls?
	Brief introduction to XACML
	Access Sentinel architecture

	Installing and configuring
	XACML configuration parameters
	Installing the Authorization Policy Manager
	Configuring the Authorization Policy Manager
	Deploying the IIS PEP
	Deploying the Apache PEP
	Modifying the SOAP address
	Tracing decision making

	About XACML framework and policy
	XACML components
	XACML terms to remember
	Introduction to XACML policy
	More about XACML policy
	Attribute- versus role-based access control

	XACML tutorials
	ViewDS PEP tutorial: ABAC
	ViewDS PEP tutorial: RBAC
	HTTP PEP tutorial

	XACML attributes provided by a PEP
	XACML attributes provided by an HTTP PEP
	XACML attributes provided by the ViewDS PEP

	Operational attributes
	viewDSXACMLSubtreePolicy
	viewDSXACMLEntryPolicy
	viewDSXACMLAttributePresentation
	viewDSXACMLPolicyVersion
	viewDSXACMLNamedExpression
	viewDSXACMLActivePolicy
	viewDSXACMLConfiguration


