

APPLICATION INTEGRATION KIT FOR .NET

Published: 2014

Version: 7.4

© eNitiatives.com Pty Ltd

Application Integration Kit for .NET

September 2014

Document Lifetime

ViewDS may occasionally update online documentation between software releases. Consequently, this PDF may not

contain the most up-to-date information. Refer to the online documentation at

www.viewds.com/resources/documentation.html for the most current information.

This publication is copyright. Other than for the purposes of and subject to the conditions prescribed under the

Copyright Act, no part of it may in any form or by any means (electronic, mechanical, microcopying, photocopying,

recording or otherwise) be reproduced, stored in a retrieval system or transmitted without prior written permission.

Inquiries should be addressed to the publishers.

The contents of this publication are subject to change without notice. All efforts have been made to ensure the accuracy

of this publication. Notwithstanding, eNitiatives.com Pty. Ltd. does not assume responsibility for any errors nor for any

consequences arising from any errors in this publication.

The software and/or databases described in this document are furnished under a licence agreement. The software and/or

databases may be used or copied only in accordance with the terms of the agreement.

ViewDS is a trademark of eNitiatives.com Pty. Ltd.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation.

All other product and company names are trademarks or registered trademarks of their respective holders.

Copyright © 1995-2014 eNitiatives.com Pty. Ltd.

ABN 19 092 422 476

http://www.viewds.com/resources/documentation.html

- 1 -

Overview
The Application Integration Kits (AIKs) for .NET and Java abstract communication between a Policy

Enforcement Point (PEP) and the Policy Decision Point (PDP) component of ViewDS Access Sentinel. It

therefore helps streamline development of a PEP.

Attempting to communicate with the PDP without the library is complex. There are the intricacies of build-

ing the XACML authorization decision request, wrapping and sending it in a SOAP envelope, and inter-

cepting the consequent response from the PDP. In contrast, the AIK libraries simply require a PEP to

make calls that supply the attributes needed to make an authorization decision.

The design of the .NET and Java AIKs is aligned with the concept of a deny-biased PEP. This means that

if the decision is permit, then the PEP will permit access. If obligations accompany the decision, then the

PEP will permit access only if it understands and is able to discharge the associated obligations. All other

decisions result in the denial of access.

- 2 -

Simple authorization requests
The .NET AIK is a class library developed in C# and compiled into files:

l PdpLiaison.dll (binaries)

l PdpLiaison.xml (documentation)

After adding the .NET AIK to your project library, you must choose which one of the three available con-

nector methods you will use to send requests to the PDP. This choice is important as it determines how

authentication between the AIK and the PDP will occur. The following options are available:

l Unsigned requests with AnonymousConnector

l Signed requests with XmlSigningConnector

l Requests over a secure connection with ClientSslConnector

Each of these methods is described in more detail in the following sections.

Unsigned requests

Use the AnonymousConnector object to perform simple unsigned authorisation requests by following

these steps:

1. Instantiate an object of the class AnonymousConnector:

AnonymousConnector(Uri PdpUrl, CommunicationType ct, X509Store

trustStore, boolean verifySignature, X509ChainPolicy chainPolicy)

The method has five arguments:

l PdpUrl – the SOAP address (including the port number) and protocol used. For example,

new Uri(“http://localhost:3009”).

A secure SSL connection from the PDP sever can be used by specifying the

HTTPS Address (including the port number) of the ViewDS server in

PdpURL. If you use this approach, then the server certificate must be trusted

by the client AIK. To verify the server certificate the .NET AIK uses the win-

dows certificate store as specified below. The HTTPS Address of the

ViewDS server is configured using the ViewDS Management Agent.

- 3 -

l ct – the method used to communicate with the PDP. Available methods are XML_SOAP,

XML_REST and JSON_REST. The default value is CommunicationType.XML_SOAP.

The communication type JSON_REST cannot be used if verifySignature is

set to true.

l trustStore – the certificate store that is searched by the AIK to find the certificate that

the server used to sign the responses, when only the subject name of the signing certificate

is included in the signature.

l verifySignature – a flag to indicate if signatures should be verified. The signatures on

PDP responses will be checked if this is set to true. The default value is false.

l chainPolicy – by default the AIK builds a simple chain for the certificates and applies

the base policy to that chain. However, if this optional argument is specified, then the value

given will be applied to the chain.

2. Using AnonymousConnector, instantiate an object of the class AuthorizationRequest:

CreateRequest()

3. Add attributes to the request object by calling the addElementmethod:

addElement(string category, string attribute, AttributeDataType

attributeDataType, string value)

The method must be called for each attribute, and has four arguments:

l category – the XACML attribute category. The list of XACML standard categories is

defined in the static class AttributeCategory.

l attribute – the XACML attribute identifier. The lists of XACML standard attributes are

defined in the static classes SubjectAttributes, ResourceAttributes,

ActionAttributes, EnvironmentAttributes.

l attributeDataType – the attribute data type.

All attribute data types described in the XACML 3.0 standard are supported with the excep-

tion of xpathExpression.

l value – the attribute value.

- 4 -

4. Call the evaluate method of the AnonymousConnector to evaluate the request.

The method takes the request as the argument, and returns an AuthorizationResponse

object:

AuthorizationResponse evaluate(AuthorizationRequestreq)

5. Process the response. The field result from the response should be checked to establish the author-

ization decision.

Example code

This simple example sends an unsigned XACML authorization decision request with the following details:

a user (the subject in XACML terminology) with the username smith is attempting to modify (the action) a

document called reports summary (the resource).

using System;
using PdpLiaison;
using PdpLiaison.Exceptions;

namespace SampleCodes
{

class SimpleAuthzTest
{

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
Uri pdpUrl = new Uri("http://localhost:6009");

// Create AnonymousConnector object
try {

connector = new AnonymousConnector(pdpUrl,
CommunicationType.XML_SOAP,
null,
false);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

// Creating the request object and adding attributes to the request
req = connector.createRequest();

- 5 -

// User Id: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

// Resource: reports summary
req.addElement(

AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"reports summary");

// Action: view
req.addElement(

AttributeCategory.action,
ActionAttributes.action_id,
AttributeDataType.anyURI,
"foo:bar:view");

// Current time
req.addElement(

AttributeCategory.environment,
EnvironmentAttributes.current_time,
AttributeDataType.time,
PdpConnector.formatLocalTimeForXml(DateTime.Now));

// Send the request to the PDP
try {

res = connector.evaluate(req);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

if (res.result == Result.permit) {
Console.WriteLine("Permit");

}
else {

Console.WriteLine("Not Permit.\r\n" + res.ToString());
}

}

- 6 -

}
}

This example is the same as the one above except that in this case signature verification is enabled.

using System;
using PdpLiaison;
using PdpLiaison.Exceptions;
using System.Security.Cryptography.X509Certificates;

namespace SampleCodes
{

class SimpleAuthzTest
{

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
X509Store trustStore;
X509ChainPolicy chainPolicy;
Uri pdpUrl = new Uri("http://localhost:6009");

// Select the trusted certificate store.
// This certificate store will be searched to find the certificate

that the server has used to sign
// the responses when only the subject name of the signing cer-

tificate is included in the signature.
trustStore = new X509Store(StoreName.AddressBook, StoreLoca-

tion.CurrentUser);

// Create and configure an X509ChainPolicy object to be used by the
connector as the certificate chain policy.

chainPolicy = new X509ChainPolicy();
chainPolicy.VerificationFlags = X509Veri-

ficationFlags.IgnoreEndRevocationUnknown;

// Create AnonymousConnector object
try {

connector = new AnonymousConnector(pdpUrl,
CommunicationType.XML_SOAP,
trustStore,
true,
chainPolicy);

}
catch (AikException ex) {

- 7 -

Console.WriteLine(ex.Message);
return;

}

// Creating the request object and adding attributes to the request
req = connector.createRequest();

// User Id: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

// Send the request to the PDP
try {

res = connector.evaluate(req);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

if (res.result == Result.permit) {
Console.WriteLine("Permit");

}
else {

Console.WriteLine("Not Permit.\r\n" + res.ToString());
}

}
}

}

Signed requests

Alternatively, use the XmlSigningConnector object to sign simple authorisation requests using XML

digital signatures before sending them to the server by following these steps:

1. Instantiate an object of the class XmlSigningConnector:

- 8 -

XmlSigningConnector (Uri PdpUrl, CommunicationType ct, X509Cer-

tificate2 signingCert, CertificateInclusion certInclusion, X509Store

trustStore, boolean verifySignature, X509ChainPolicy chainPolicy)

The method has seven arguments:

l PdpUrl – the SOAP address (including the port number) and protocol used. For example,

new Uri(“http://localhost:3009”).

A secure SSL connection from the PDP sever can be used by specifying the

HTTPS Address (including the port number) of the ViewDS server in

PdpURL. If you use this approach, then the server certificate must be trusted

by the client AIK. To verify the server certificate the .NET AIK uses the win-

dows certificate store as specified below. The HTTPS Address of the

ViewDS server is configured using the ViewDS Management Agent.

l ct – the method used to communicate with the PDP. Available methods are XML_SOAP

and XML_REST. The default value is CommunicationType.XML_SOAP.

The XmlSigningConnector method does not support the communication type

JSON_REST.

l signingCert – the certificate used to sign requests.

l certInclusion – determines whether the signing certificate only or all of the certificates

in the certificate chain should be included in the signature. For example, Cer-

tificateInclusion.certificateChain.

l trustStore – the certificate store that is searched by the AIK to find the certificate that

the server used to sign the responses when only the subject name of the signing certificate

is included in the signature.

l verifySignature – a flag to indicate if signatures should be verified. The signatures on

PDP responses will be checked if this is set to true. The default value is false.

l chainPolicy – by default the AIK builds a simple chain for the certificates and applies

the base policy to that chain. However, if this optional argument is specified, then the value

given will be applied to the chain.

2. Using XmlSigningConnector, instantiate an object of the class AuthorizationRequest:

- 9 -

CreateRequest()

3. Add attributes to the request object by calling the addElementmethod:

addElement(string category, string attribute, AttributeDataType

attributeDataType, string value)

The method must be called for each attribute, and has four arguments:

l category – the XACML attribute category. The list of XACML standard categories is

defined in the static class AttributeCategory.

l attribute – the XACML attribute identifier. The lists of XACML standard attributes are

defined in the static classes SubjectAttributes, ResourceAttributes,

ActionAttributes, EnvironmentAttributes.

l attributeDataType – the attribute data type.

All attribute data types described in the XACML 3.0 standard are supported with the excep-

tion of xpathExpression.

l value – the attribute value.

4. Call the evaluate method of the XmlSigningConnector to evaluate the request.

The method takes the request as the argument, and returns an AuthorizationResponse

object:

AuthorizationResponse evaluate(AuthorizationRequestreq)

5. Process the response. The field result from the response should be checked to establish the author-

ization decision.

Example code

using System;
using PdpLiaison;
using PdpLiaison.Exceptions;
using System.Security.Cryptography.X509Certificates;

namespace SampleCodes
{

class SimpleAuthzTest
{

- 10 -

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
Uri pdpUrl = new Uri("http://localhost:6009");
X509Certificate2 signingCert;
X509Store trustStore;
X509ChainPolicy chainPolicy;

// Select the trusted certificate store.
// This certificate store will be searched to find the certificate

that the server has used to sign
// the responses when only the subject name of the signing cer-

tificate is included in the signature.
trustStore = new X509Store(StoreName.AddressBook, StoreLoca-

tion.CurrentUser);

// Create and configure an X509ChainPolicy object to be used by the
connector as the certificate chain policy.

chainPolicy = new X509ChainPolicy();
chainPolicy.VerificationFlags = X509Veri-

ficationFlags.IgnoreEndRevocationUnknown;

// Load the signing certificate
signingCert = new X509Certificate2(@"C:\test\certificate.p12");

// Create AnonymousConnector object
try {

connector = new XmlSigningConnector(pdpUrl,
CommunicationType.XML_SOAP,
signingCert,
CertificateInclusion.certificateChain,
trustStore,
true,
chainPolicy);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

// Creating the request object and adding attributes to the request
req = connector.createRequest();

// User Id: smith

- 11 -

req.addElement(
AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

// Send the request to the PDP
try {

res = connector.evaluate(req);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

if (res.result == Result.permit) {
Console.WriteLine("Permit");

}
else {

Console.WriteLine("Not Permit.\r\n" + res.ToString());
}

}
}

}

Requests over a secure connection

Or use the ClientSslConnector object to send requests over a secure HTTPS connection by fol-

lowing these steps:

When ClientSslConnector is used both the AIK client and the PDP server have to present

their certificates to each other for authentication to occur.

1. Instantiate an object of the class ClientSslConnector:

ClentSslConnector(Uri PdpUrl, X509Certificate2 clientCert, X509Store

trustStore, boolean verifySignature, CommunicationType ct,

X509ChainPolicy chainPolicy)

The method has six arguments:

- 12 -

l PdpUrl – the SOAP address (including the port number) and protocol used. For example,

new Uri(“http://localhost:3009”).

A secure SSL connection from the PDP sever can be used by specifying the

HTTPS Address (including the port number) of the ViewDS server in

PdpURL. If you use this approach, then the server certificate must be trusted

by the client AIK. To verify the server certificate the .NET AIK uses the win-

dows certificate store as specified below. The HTTPS Address of the

ViewDS server is configured using the ViewDS Management Agent.

l clientCert – the certificate that the AIK uses to establish an SSL connection to the

PDP.

l trustStore – the certificate store that is searched by the AIK to find the certificate that

the server used to sign the responses when only the subject name of the signing certificate

is included in the signature.

l verifySignature – a flag to indicate if signatures should be verified. The signatures on

PDP responses will be checked if this is set to true. The default value is false.

l ct – the method used to communicate with the PDP. Available methods are XML_SOAP,

XML_REST and JSON_REST. The default value is CommunicationType.XML_SOAP.

The communication type JSON_REST cannot be used if verifySignature is

set to true.

l chainPolicy – by default the AIK builds a simple chain for the certificates and applies

the base policy to that chain. However, if this optional argument is specified, then the value

given will be applied to the chain.

2. Using ClientSslConnector, instantiate an object of the class AuthorizationRequest:

CreateRequest()

3. Add attributes to the request object by calling the addElementmethod:

addElement(string category, string attribute, AttributeDataType

attributeDataType, string value)

- 13 -

The method must be called for each attribute, and has four arguments:

l category – the XACML attribute category. The list of XACML standard categories is

defined in the static class AttributeCategory.

l attribute – the XACML attribute identifier. The lists of XACML standard attributes are

defined in the static classes SubjectAttributes, ResourceAttributes,

ActionAttributes, EnvironmentAttributes.

l attributeDataType – the attribute data type.

All attribute data types described in the XACML 3.0 standard are supported with the excep-

tion of xpathExpression.

l value – the attribute value.

4. Call the evaluate method of the ClientSslConnector to evaluate the request.

The method takes the request as the argument, and returns an AuthorizationResponse

object:

AuthorizationResponse evaluate(AuthorizationRequestreq)

5. Process the response. The field result from the response should be checked to establish the author-

ization decision.

Example code

using System;
using PdpLiaison;
using PdpLiaison.Exceptions;
using System.Security.Cryptography.X509Certificates;

namespace SampleCodes
{

class SimpleAuthzTest
{

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
Uri pdpUrl = new Uri("https://localhost:6010");
X509Certificate2 clientCert;

- 14 -

// Load the signing certificate
clientCert = new X509Certificate2(@"C:\test\certificate.p12");

// Create AnonymousConnector object
try {

connector = new ClientSslConnector(pdpUrl,
clientCert,
null,
false,
CommunicationType.XML_SOAP);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

// Creating the request object and adding attributes to the request
req = connector.createRequest();

// User Id: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

// Send the request to the PDP
try {

res = connector.evaluate(req);
}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

if (res.result == Result.permit) {
Console.WriteLine("Permit");

}
else {

Console.WriteLine("Not Permit.\r\n" + res.ToString());
}

}
}

}

- 15 -

Obligations and advice
Obligations and advice are features of XACML 3.0 that can be used to convey directives to applications

that define them within an XACML response. An obligation is a mandatory directive whereas advice is

optional.

To illustrate, an obligation to add a log entry might be associated with permitting access to a highly restric-

ted resource. In this case, when the application is told that access is permitted it is also told that it is

obliged to log the access for auditing purposes. If the application cannot perform the logging operation, it

will refuse access to the resource.

The application using the AIK is required to register known obligations. This is intended to ensure that all

obligations are identified and supported by the application, and that any unsupported obligations result in

the application returning denyDueToUnrecognizedObligations. To register obligations use:

registerObligation(string obligationIdentifier)

The Obligation object is used to return obligations in the authorization response.

Advice is similar to an obligation, except execution of advice by the application is optional.

For example an XACML response might deny access to a document on the weekend and come with the

advice to show amessage to the user that access is only available on week days.

The Advice object is used to return advice in the authorization response.

The specific obligations and advice implemented by a given application are defined by that applic-

ation. The .NET AIK merely provides a mechanism for handling authorization responses that

include obligations and advice.

Obligations and advice - example code

This example shows how to register and fulfil an obligation. For the sake of brevity simple strings are used

as identifiers for attribute assignments (e.g. email and recipientaddress) in place of URIs (e.g. foo:bar:re-

cipientaddress).

using System;
using System.Collections.Generic;
using System.Net;
using System.Net.Mail;

- 16 -

using PdpLiaison;
using PdpLiaison.Exceptions;
using System.Security.Cryptography.X509Certificates;

namespace SampleCodes
{

class SimpleAuthzTest
{

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
Uri pdpUrl = new Uri("http://localhost:6009");

// Create AnonymousConnector object
try {

connector = new AnonymousConnector(pdpUrl,
CommunicationType.XML_SOAP,
null,
false);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

// Register obligations
connector.registerObligation("foo:bar:email");

// Creating the request object and adding attributes to the request
req = connector.createRequest();

// User Id: smith
req.addElement(

AttributeCategory.access_subject,
SubjectAttributes.subject_id,
AttributeDataType._string,
"smith");

// Send the request to the PDP
try {

res = connector.evaluate(req);

}
catch (AikException ex) {

- 17 -

Console.WriteLine(ex.Message);
return;

}

switch (res.result) {
case Result.deny:

Console.WriteLine("Deny");
break;

case Result.denyWithObligations:
Console.WriteLine("Deny");
fullfillObligations(res.obligations);
break;

case Result.denyDueToUnrecognizedObligations:
Console.WriteLine("Deny");
break;

case Result.denyUnlessAllObligationsSatisfied:
if (fullfillObligations(res.obligations)) {

Console.WriteLine("Permit");
}
else {

Console.WriteLine("Deny");
}
break;

case Result.permit:
Console.WriteLine("Permit");
break;

}
}

private static bool fullfillObligations(Sys-
tem.Collections.Generic.List<Obligation> obligations)

{
foreach (Obligation ob in obligations) {

if (ob.id == "foo:bar:email") {
if (!sendEmail(ob)) {

return false;
}

}
else {

return false;
}

}

return true;
}

- 18 -

private static bool sendEmail(Obligation ob)
{

MailMessage message = new MailMessage();
List<string> recipientAddresses = new List<string>();

message.From = new MailAddress("testpep@somedomain.com", "TEST-PEP");

foreach (AttributeAssignment aa in ob.attributes) {
string attId = "";
string attCat = "";
string attVal = "";

try { attId = aa.attributeId.ToLower(); }
catch { }
try { attCat = aa.categoryId.ToLower(); }
catch { }
try { attVal = aa.attributeValue; }
catch { }

if (attCat == "email" && attId == "recipientaddress") {
recipientAddresses.Add(attVal);

}
if (attCat == "email" && attId == "subject") {

message.Subject = attVal;
}
if (attCat == "email" && attId == "body") {

message.Body = attVal;
}

}

if (recipientAddresses.Count < 1) {
return false;

}
foreach (string recipient in recipientAddresses) {

message.To.Add(recipient);
}

try {
SmtpClient smtp = new SmtpClient {

Host = "smtp.somedomain.com",
Port = 587,
EnableSsl = true,
DeliveryMethod = SmtpDeliveryMethod.Network,
UseDefaultCredentials = false,
Credentials = new NetworkCredential("testpep@somedomain.com", "pass-

word")

- 19 -

};

smtp.Send(message);
}
catch {

return false;
}

return true;
}

}
}

- 20 -

Multiple requests
In addition to sending individual authorisation requests, the . NET and Java AIKs also allow you to create

multiple authorization requests and add them to one MultiRequest object. The MultiRequest

object is then sent that to the PDP, which returns and MultiResponse object. Each request added to

the multi-request is assigned a UID which is used to identify the corresponding result element in the multi-

response.

This feature is particularly useful in circumstances where one access control action by the application

requiresmore than one authorization decision to be made.

For example, if a user (subject) is trying to view (action) a list of documents (resources), then an author-

ization decision is required for each item on the list. In such a scenario, sending all the requests in a single

message, rather than sending one message for each request, reduces the messaging overhead con-

siderably.

Multiple requests - example code

This example shows how to use MultiRequest to send an authorisation request for the user with the role

MANAGER, who is trying to access two files REPORT A and REPORT B:

using System;
using PdpLiaison;
using PdpLiaison.Exceptions;

namespace SampleCodes
{

class SimpleAuthzTest
{

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req1, req2;
MultiRequest mulReq;
MultiResponse mulRes;
Uri pdpUrl = new Uri("http://localhost:6009");

// Create AnonymousConnector object
try {

connector = new AnonymousConnector(pdpUrl,
CommunicationType.XML_SOAP,

- 21 -

null,
false);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

// Creating the request objects and adding attributes to them
req1 = connector.createRequest();
req2 = connector.createRequest();

req1.addElement(
AttributeCategory.access_subject,
SubjectAttributes.role,
AttributeDataType._string,
"MANAGER");

req1.addElement(
AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"REPORT A");

req2 = connector.createRequest();

req2.addElement(
AttributeCategory.access_subject,
SubjectAttributes.role,
AttributeDataType._string,
"MANAGER");

req2.addElement(
AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"REPORT B");

mulReq = new MultiRequest(false);
mulReq.addRequest(req1);
mulReq.addRequest(req2);

// Send the request to the PDP
try {

mulRes = connector.evaluate(mulReq);
}

- 22 -

catch (AikException ex) {
Console.WriteLine(ex.Message);
return;

}

if (mulRes.getResponseForRequest(req1).result == Result.permit &&
mulRes.getResponseForRequest(req2).result == Result.permit) {
System.Console.WriteLine("Permit");

}
else {

System.Console.WriteLine("Deny");
}

}
}

}

- 23 -

Tracing
The .NET and Java AIKs provide a tracing feature to allow you to investigate the cause of any unexpected

responses you obtain from the PDP. If trace information is requested, the response from the PDP will

include information about the policy evaluation process that took place on the server.

Tracing is not supported for the communication type JSON_REST.

To request trace information you must set the traceSwitch:

AuthorizationRequest req = new AuthorizationRequest(true);

In order to get trace information, tracing must also be enabled on the ViewDS server. See the

Enable tracing topic in the ViewDS Access Sentinel Installation and ReferenceGuide for full

details.

Trace information will then be available in the traceInfo property included in the response.

Tracing - example code

This example shows how to switch on tracing.

using System;
using PdpLiaison;
using PdpLiaison.Exceptions;

namespace SampleCodes
{

class SimpleAuthzTest
{

static void Main(string[] args)
{

PdpConnector connector;
AuthorizationRequest req;
AuthorizationResponse res;
Uri pdpUrl = new Uri("http://localhost:6009");

// Create AnonymousConnector object
try {

connector = new AnonymousConnector(pdpUrl,

- 24 -

CommunicationType.XML_SOAP,
null,
false);

}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

// Creating the request object with the trace flag set to true.
req = connector.createRequest(true);

req.addElement(
AttributeCategory.resource,
ResourceAttributes.resource_id,
AttributeDataType._string,
"REPORT A");

// Send the request to the PDP
try {

res = connector.evaluate(req);
}
catch (AikException ex) {

Console.WriteLine(ex.Message);
return;

}

if (res.result == Result.permit) {
System.Console.WriteLine("Permit");

}
else {

System.Console.WriteLine("Deny");
}

System.Console.WriteLine(res.traceInfo);
}

}
}

- 25 -

AIK Structure
The .NET AIK is a class library developed in C# .NET and compiled into two files:

l PdpLiaison.dll (binaries)

l PdpLiaison.xml (documentation)

The library exposes the following members.

AnonymousConnector

This class is used to configure an anonymous connection to a PDP. An object of this type should be instan-

tiated at the beginning to be used for sending anonymous authorization requests to the PDP. The public

members of this class are shown below.

XmlSigningConnector

This class is used to configure a connection to a PDP through which signed authorisation request can be

sent. An object of this type should be instantiated at the beginning to be used to sign authorisation

- 26 -

requests using XML digital signatures before sending them to the PDP. The public members of this class

are shown below.

ClientSslConnector

This class is used to configure a secure HTTPS connection to a PDP. An object of this type should be

instantiated at the beginning to be used to send authorisation requests to the PDP via a secure HTTPS

connection. The public members of this class are shown below.

- 27 -

AuthorizationRequest

Objects of this type should be instantiated for each XACML authorization decision request to be sent to

the PDP. The public members of this class are shown below.

- 28 -

MultiRequest

Multiple AuthorizationRequest objects can be added to an object of this type and sent together to the PDP

which then provides a MultiReponse. Each request added to the the MultiRequest object is assigned a

UID which is used to identify the corresponding result element in the MultiResponse. The public members

of this class are shown below:

AuthorizationResponse

The results of an XACML authorization decision request are returned as objects of this type. The public

members of this class are shown below.

MultiResponse

The results of a MultiRequest authorization decision request are returned as objects of this type. The pub-

lic members of this class are shown below:

- 29 -

Obligation

The obligations to be fulfilled are returned as objects of this type which are included in the authorization

response. The public members of this class are shown below.

Advice

The advice to be fulfilled is returned as objects of this type which are included in the authorization

response. The public members of this class are shown below.

AttributeAssignment

The attributes of an obligation or an advice are objects of this type. The public members of this class are

shown below.

AttributeCategory

A list of constant strings that represent identifiers of the standard attribute categories specified in the

XACML core specification.

- 30 -

SubjectAttributes

A list of constant strings that represent identifiers of the standard subject attributes specified in the

XACML core specification.

ResourceAttributes

A list of constant strings that represent identifiers of the standard resource attributes specified in the

XACML core specification.

ActionAttributes

A list of constant strings that represent identifiers of the standard action attributes specified in the XACML

core specification.

EnvironmentAttributes

A list of constant strings that represent identifiers of the standard environment attributes specified in the

XACML core specification.

- 31 -

DelegationInfoAttributes

A list of constant strings that represent identifiers of the standard delegationInfo attributes specified in the

XACML core specification.

AttributeDataType

An enumerative list of standard data types specified in the XACML core specification.

Result

An enumerative list of authorization results specified in the AIK.

XacmlStatus

An enumerative list of standard XACML status types.

- 32 -

- 33 -

AIK Class Diagram

- 34 -

AIK Exceptions
The Java AIK throws exceptions when errors occur, for example, when the AIK fails to send a request to

the PDP because the PDP is unreachable.

A series of exception classes have been added to Java AIK to handle these, as shown below:

This appendix lists all of the exceptions thrown for each supported connector class and their causes.

Class: AnonymousConnector

Method: evaluate

Cause: failure in sending the HTTP request to the PDP

l Exception type: AikConnectionException

l Exception message: "Error in sending the HTTP request to PDP: " + innerWebException.Message

Cause: saml request Id mismatch with InResponseTo Id

l Exception type: AikSecurityException

l Exception message: "Request ID does not match the response ID"

Cause: failure in finding a signature in the response

- 35 -

l Exception type: AikServerAuthenticationException

l Exception message: "Verification failed: No Signature was found in the message."

Cause: finding more than one signature on the response

l Exception type: AikServerAuthenticationException

l Exception message: "Verification failed: More that one signature was found for the message."

Cause: failure in signature validation

l Exception type: AikServerAuthenticationException

l Exception message: "Invalid signature."

Cause: failure in certificate validation

l Exception type: AikServerAuthenticationException

l Exception message: "Certificate not trusted."

Cause: failure in finding the X509SubjectName in the response in the absence of certificate in the

response

l Exception type: AikServerAuthenticationException

l Exception message: "Subject name of the signing certificate not found."

Cause: failure in finding a certificate in the identified store with the identified X509SubjectName

l Exception type: AikServerAuthenticationException

l Exception message: "Certificate with the identified subject name does not exist in the certificate

store.

Cause: finding more than one certificate in the identified store with the identified X509SubjectName

l Exception type: AikServerAuthenticationException

l Exception message: "More than one certificate with the identified subject name in the certificate

store."

Cause: the inResponseTo field of the received response does not match the queryId of the sent request

l Exception type: AikException

l Exception message: Request ID does not match the response ID.

Constructor initialization

Cause: invalid constructor's parameter combination. XML signature in json rest is invalid.

- 36 -

l Exception type: AikSecurityException

l Exception message: "XML Signature is not supported in JSON_REST"

Cause: invalid constructor's parameter combination. AIK requires parameters attribute to be set in order to

establish SSL connection.

l Exception type: AikSecurityException

l Exception message: "secure connection is set, parameters cannot be null."

Cause: invalid constructor's parameter combination. AIK requires parameters attribute to be set in order to

verify signed responses.

l Exception type: AikSecurityException

l Exception message: "verify signature flag is set, parameters cannot be null."

Class: XmlSigningConnector

All of the exceptions for AnonymousConnector plus:

Method: evaluate

Cause: server does not accept the AIK's signature on the request and returns urn:oas-

is:names:tc:SAML:2.0:status:AuthnFailed as the SAML status.

l Exception type: AikClientAuthenticationException

l Exception message: "Authentication failed."

Class: ClientSslConnector

All of the exceptions for AnonymousConnector plus:

Method: evaluate

Cause: server does not allow the SSL connection from the AIK because of the client's certificate.

l Exception type: AikClientAuthenticationException

l Exception message: "Authentication failed."

	Overview
	Simple authorization requests
	Unsigned requests
	Example code

	Signed requests
	Example code

	Requests over a secure connection
	Example code

	Obligations and advice
	Obligations and advice - example code

	Multiple requests
	Multiple requests - example code

	Tracing
	Tracing - example code

	AIK Structure
	AnonymousConnector
	XmlSigningConnector
	ClientSslConnector
	AuthorizationRequest
	MultiRequest
	AuthorizationResponse
	MultiResponse
	Obligation
	Advice
	AttributeAssignment
	AttributeCategory
	SubjectAttributes
	ResourceAttributes
	ActionAttributes
	EnvironmentAttributes
	DelegationInfoAttributes
	AttributeDataType
	Result
	XacmlStatus

	AIK Class Diagram
	AIK Exceptions
	Class: AnonymousConnector
	Class: XmlSigningConnector
	Class: ClientSslConnector

